

Master of Engineering Power Electronics Subject Code: 3722917 Semester – II Subject Name: Programmable Logic Controllers

Type of course: Program Elective III

Prerequisite:

Digital Logic Design, Concept of Micro Processor and Micro Controller, Relay Logic, Control System, Knowledge of programming and flow charts

Rationale:

Students of Instrumentation & Control engineering should have detailed skill of controlling any system. Programmable Logic Controller (PLC) is a very important device to control any system and is widely used in industries now a day. Therefore, the person who wants to work in control and automation industries must have enhance knowledge of PLC. This course gives a detailed knowledge and practice of PLC programming

Teaching and Examination Scheme:

Teaching Scheme C			Credits	Examination Marks			Total	
L	Т	Р	C	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	Total
		Hrs
1	PLC Basics:	6
	Programmable Logic Controllers (PLCs): Introduction; definition & history of the PLC;	
	Principles of Operation; Various Parts of a PLC: CPU & programmer/ monitors; PLC	
	input & output modules; Solid state memory; the processor; I/O modules; power supplies.	
	PLC advantage & disadvantage; PLC versus Computers, PLC Application. Programming	
	equipment; proper construction of PLC ladder diagrams; process scanning consideration;	
	PLC operational faults.	
	PLC Hardware Components:	
	The I/O section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O	
	specifications, The CPU, Memory design, Memory Types, Programming Devices,	
	Selection of wire types and size.	
2	Fundamentals of Logic:	6
	The Binary Concept, AND, OR and NOT functions, Boolean Algebra, developing circuits	
	from Boolean Expression expressions, Producing the Boolean equation from given circuit,	

Page 1 of 6

Master of Engineering Power Electronics Subject Code: 3722917

	Subject Code: 5722917	
	Hardwired logic versus programmed logic, Programming word level logic instructions.	
	Converting Relay schematics and Boolean equation into PLC Ladder Programs, Writing a	
	ladder logic program directly from a narrative description.	
	Various INPUT /OUTPUT Devices and its interfacing with PLC:	
	Different types of Input devices: Switches: Push button Switches, Toggle Switches,	
	Proximity switches, Photo switches, Temperature Switch, Pressure Switch, and Level	
	Switch, Flow Switches, manually operated switches, Motor starters, Transducers and	
	sensors. Transmitters etc. Their working, specification and interfacing with PLC.	
	Different types of Output devices: Electromagnetic Control Relays, Latching relays.	
	Contactors, Motors, Pumps, Solenoid Valves etc. Their working, specification and	
	interfacing with PLC	
3	Basics of PLC Programming.	6
0	Processor Memory Organization Program Scan PLC Programming languages Relay type	U
	instructions Instruction addressing Branch Instructions Internal Relay Instructions	
	Programming Examine if Closed and examine If Open instructions. Entering the ladder	
	diagram Modes of operation. Creating Ladder Diagrams from Process Control	
	Descriptions. Ladder diagram & sequence listing: large process ladder diagram	
	Descriptions. Ladder diagram & sequence insting, large process radder diagram	
	construction, now charting as programming method, industrial Examples	
	Bit Logic Instructions: NO, NC, Set, Reset, rising edge Pulse, Falling Edge Pulse, KS, SK,	
	NOP, OUTPUT etc.	
	Clock: READ RTC, SET_RTC.	
	Different Logical operation Instructions:	
	INVERT BIT, BYTE, WORD DOUBLE WORD. OR: BIT, BYTE, WORD DOUBLE	
	WORD. AND: BIT, BYTE, WORD DOUBLE WORD. X-OR: BIT, BYTE, WORD	
	DOUBLE WORD.	
4	Different Integer Math Instructions:	5
	Addition Subtraction Multiplication Division Increment Decrement, Integer Byte	
	Double Word Different Floating-Point Math Instructions: Addition Subtraction	
	Multiplication Division Square Poot Sin Cosine Tan IN Exponential PID	
	Multiplication, Division, Square Root, Sin, Cosine, Tan, EN, Exponential, FiD.	
	Programming Timers:	
	Mechanical Timing relay. Timer instructions, ON delay timer instruction. Off Delay timer	
	instruction Retentive Timer, Cascading Timers, avamples of timer function industrial	
	application, industrial process timing application	
	application, industrial process tilling application.	
5	Programming Counters:	5
-	Counter Instructions, Up-counter, down counter. Up Down counter. Cascading counters.	-
	Incremental encoder counter applications, Combining counter and timer functions. High	

Page 2 of 6

Master of Engineering Power Electronics Subject Code: 3722917

	Speed counter instruction, HSC, PLS, examples of counter function industrial application.	
	Different Conversion Instructions:	
	Byte – Integer, Integer To Byte, Integer To Double Integer, Double Integer To Integer,	
	Real To Integer, Real To Integer, Integer To String, String To Integer, Integer To ASCII,	
	ASCII To Integer, Real To ASCII, ASCII To Real, ASCII To Hexadecimal, Hexa-	
	Decimal To ASCII, Decode,, encode, segment. Truncate.	
6	Different Comparison Instructions:	5
	Data manipulation, data transfer operations, Data compare instructions, Data manipulation	
	Programs, Numerical Data I/O interfaces, Set-point control.	
	Program Control Instructions:	
	The PLC SKIP and MASTER CONTROL RELAY Functions. Introduction; the SKIP	
	function & application; the MASTER CNTROL RELAY function & application.	
	Introduction: Jump with non-return; jump with return.	
7	Data Handling Functions PLC:	3
	Data Move Systems. Introduction; PLC MOVE function & application; moving large	
	blocks of PLC data; PLC table & registers moves; other PLC MOVE functions. Other PLC	
	Data Handling Functions. Different Move Instructions: BIT, BYTE, WORD DOUBLE	
	WORD, REAL, SWAP Byte, Move Byte Immediate Read, Move Byte Immediate Write.	
	Different Shift/Rotate Instructions	
	Sequencer and shift register instructions:	
	PLC Sequencer Functions. Introduction; electromechanical sequencing; the basic PLC	
	sequencer function; a basic PLC sequencer application with timing; other PLC sequencer	
	function; cascading sequencer. Controlling a Robot with a PLC. Introduction; basic two	
	axis ROBOT with PLC sequencer control; industrial three axis ROBOT with PLC control.	
8	Different Interrupt Instructions:	3
	ENI, DSI, RETI, ATCH, DTCH, CLR_EVNT	
	PLC Networking:	
	Introduction, Levels of Industrial Control, Types of Networking, Network communications	
	Analog PLC Operation:	
	Introduction, Types of PLC Analog Modules and Systems, PLC Analog Signal Processing,	
	PLC Analog Application Examples, PID Modules, PID Tuning, Typical PID Functions.	
	PLC Installation practices, Editing and Troubleshooting:	
	PLC Enclosures, Electrical Noise, Leaky Inputs and Outputs, Grounding, Voltage	
	variations and Surges, Program Editing, Programming and Monitoring, Preventive	
	Maintenance, Troubleshooting, Connecting PC with PLC.	
9	Alternative Programming Languages:	3
	Structured Text, Function block diagram, Instruction list, sequential function chart –	
	Introduction and of few instructions with LD	
	Various Brands of PLCs and their revolution:	

Master of Engineering Power Electronics Subject Code: 3722917

Overview, Siemens PLC, Allen Bradley PLC, Schneider electric PLC, Omron PLC, Mitsubishi PLC. Their comparison of various instructions.

Reference Books:

- 1. Programmable logic controller Author: Frank D. Petrusella Publisher: Tata McGraw-Hill publication
- 2. Introduction to programmable logic controller Author: Gary dunning Publisher: Thomson Asia Pte Ltd. Publication
- 3. Programmable Logic Controllers: Principles and Applications Author: John W. Webb and Ronald A. Reis Publisher: Prentice Hall India publication
- 4. Programmable Logic Controllers Author: W. Bolton Publisher: Elsevier Newnes publication
- 5. Programmable Controllers An engineer's guide Author: E. A. Parr Publisher: Elsevier Newnes publication S7-200,
- 6. PLC Manual of Siemens for Instructions S7-300,
- 7. Programmable Controller Author: T. A. Huges Publisher: ISA publication
- 8. Programmable Logic Controllers: Programming methods and applications Author: John R. Hackworth and Frederick D. Hackworth Publisher: Pearson publication

Course Outcomes:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Compare conventional sequential control with programmable logic	20
	control system	
CO-2	Develop programs using different PLC programming languages for	40
	sequential and continuous process	
CO-3	Interface analog and digital input/ output devices with PLC using	20
	different communication protocol	
	L L L L L L L L L L L L L L L L L L L	
CO-4	Test the PLC based system and troubleshoot the errors associated with it.	20

Master of Engineering Power Electronics Subject Code: 3722917

List of Experiments:

Sr.	Experiment
No.	
1	Introduction to ladder programming& to implement basic logic gates.
2	Develop, Simulate and Test Ladder diagram for a. A Door Bell Operation b. A Combination Lock
3	Develop, Simulate and Test Ladder diagram for Bottle Filling system.
4	Develop, Simulate and Test Ladder diagram for Traffic Light Control System.
5	Develop, Simulate and Test Ladder diagram for Car Parking system.
6	Develop Simulate and Test Ladder diagram for an alarm annunciator system.
7	Develop, Simulate and Test Ladder diagram for Batch Mixer.
8	Develop, Simulate and Test Ladder diagram for Drink Dispenser system.
9	Develop and test PLC program for three phase motor in both direction.
10	Develop, Simulate and Test Ladder diagram for stepper motor control in forward and reverse direction.
11	Develop and test PLC program for two axis Robotic arm for pick and place application
12	Develop, Simulate and Test Ladder diagram for Packing line system.
13	Develop, Simulate and Test Ladder diagram for an Elevator system.
14	Develop and test PLC program for PID Controller for Temperature control Application.
15	Develop and test PLC program in FBD, SFC, IL, ST, and Ladder Logic Language for Motor starter application.
16	Detail study of PLC Hardware and its interfacing.

Major Equipment:

Computers, simulation software, PLCs, Input/ Output devices.

Master of Engineering Power Electronics Subject Code: 3722917

List of Open Source Software/learning website:

http://coep.vlab.co.in/?sub=33&brch=97 http://www.plcdev.com/book/export/html/9 http://www.plcmanual.com/ http://literature.rockwellautomation.com/ http://www.automation.siemens.com/ http://nptel.ac.in/video.php