GOVERNMENT OF GUJARAT LUKHDHIRJI ENGINEERING COLLEGE, MORBI

Mechanical Engineering Department

Course Teaching-Learning-Evaluation Strategy

Subject: Rapid Prototyping (3171926) Class: 7th Semester Faculties: H N Jani (HNJ), M B Vaghela (MBV)

Academic Year: 2023-24(ODD) Type of course: Professional Elective Prerequisite: Nil

Course Outcomes (Cos)

CO Nos.	CO statement				
1.	Distinguish RP and other related technology	10			
2.	Understand and use techniques for processing of CAD models for rapid prototyping.	35			
3.	Apply fundamentals of rapid prototyping techniques.	25			
4.	Use appropriate tooling for rapid prototyping process.	20			
5.	Create component with RP applications	10			

Teaching and Examination Scheme:

Teaching Scheme credit			credits Examination Marks							
т	т				C	Theory M	larks	Practical	Marks	Total Marks
L	1	P	C	ESE(E)	PA(M)	ESE(V)	PA(I)	IVIAI KS		
3	0	2	4	70	30	30	20	150		

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	Recall	Understa nding	Application	Analysis	Evaluate	Create
Marks % weightage	15	15	25	20	15	10
70 marks	10.5	10.5	17.5	14	10.5	7
30 marks	4.5	4.5	7.5	6	4.5	3

Course Evaluation Plan

	Direct Assessment								
	Inter	nal Evaluation	External(Uni.) Evaluation						
	Mid Sem Exam (continue evaluation) (Theory)	Assignment/ Quiz	Lab. Work	Practical/ Viva (IF)	Uni. Exam (Theory)				
Max. Marks	30	20	20	30	70				
Weightage		30%		70%	6				
CO1	03	04	02						
CO2	11	07	06						
CO3	10	05	06						
CO4	06	04	03						
CO5	-	-	03						

Course Content with lecture plan:

Sr. No.	Chapter	Course outcome(s)	Lecture(s) require	Faculty
1	Introduction: Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Classification of Rapid Manufacturing Processes: Additive, Subtractive, Formative, Generic RP process. Distinction between RP and CNC, other related technologies.	CO1	04	MBV
2	CAD Modelling and Data Processing for RP: CAD model preparation, Data interfacing: formats (STL, SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP), conversation, validity checks, repair procedures; Part orientation and support generation, Support structure design, Model Slicing algorithms and contour data organization, direct and adaptive slicing, Tool path generation.	CO2	12	MBV
3	RP Processes: Process Physics, Tooling, Process Analysis, Material and technological aspects, Applications, limitations and comparison of various rapid manufacturing processes. Photopolymerization (Stereolithography (SL), Microstereolithography), Powder Bed Fusion (Selective laser Sintering (SLS), Electron Beam melting (EBM)), Extrusion- Based RP Systems (Fused Deposition Modelling (FDM)), 3D Printing, Sheet Lamination (Laminated Object Manufacturing (LOM), Ultrasonic Consolidation (UC)), Beam Deposition (Laser Engineered Net Shaping (LENS), Direct Metal Deposition (DMD)).	CO3,CO4	22	HNJ/ MBV
4	Errors in RP Processes: Pre-processing, processing, post- processing errors, Part building errors in SLA, SLS.	CO3	04	MBV
5	RP Applications: Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse Engineering, Medical Applications of RP.	CO5	03	MBV

Reference Books:

- 1. C K, Leong K F, Chu S L, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific.
- 2. Gibson D W Rosen, Brent Stucker., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer.
- 3. Noorani R, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley & Sons.
- 4. Liou W L, Liou F W, Rapid Prototyping and Engineering applications: A tool box for prototype development, CRC Press.
- 5. Kamrani A K, Nasr E A, Rapid Prototyping: Theory and practice, Springer,

U	ourse articulation matrix correlation														
	CO No.	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO1 0	P01 1	P01 2	PSO 1	PSO 2
Ĩ	CO1	3													
	CO2			3		3								3	3
	CO3					3								3	3
	CO4			2		3								3	3
	CO5			2	2	3								3	3

Course articulation matrix correlation

Justification(s) of correlation between Co and Pos/PSOs

Mapping	Justification(s)
CO1 with PO1 (3)	CO1 mapped with PO1 because through CO1 students shows ability to apply basic engineering knowledge and fundamentals.
CO2 with PO3(3), PO5(3) PSO1(3),PSO2(3)	CO2 mapped with PO3, PO5, POS1 and PSO2 because students analyse and developing model with use of modern tools.
CO3 with PO5(3), PSO1(3), PSO2(3)	CO3 mapped with PO5, POS1 and PSO2 because students will use modern tools.
CO4 with PO3(2), PO5(3) PSO1(3),PSO2(3)	CO4 mapped with PO3, PO5, POS1 and PSO2 because students analyse and developing model with use of modern tools.
CO5 with PO3(2), PO4(2), PO5(3) PSO1(3), PSO2(3)	CO5 mapped with PO3, PO4, PO5, POS1 and PSO2because students demonstrate ability for design and development via interpretation/synthesis using modern tools.

Tagging of Cos with POs, PSOs, Cognitive Level (R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate and C-Create), Knowledge Categories (F—Factual, C— Conceptual, P—Procedural and M—Metacognitive).

CONCEPT	Statement	POs	PSOs	Cognitive	Knowledge
No.				Level	Categories
CO1	Distinguish RP and other related technology	PO1	-	U	С
CO2	Understand and use techniques for processing of CAD models for rapid prototyping.	PO3, PO5	PSO1, PSO2	Ap,An	C, P
CO3	Apply fundamentals of rapid prototyping techniques.	PO5	PSO1, PSO2	Ap,An	C, P
CO4	Use appropriate tooling for rapid prototyping process.	PO3, PO5	PSO1, PSO2	Ap	С, Р
CO5	Create component with RP applications	PO3, PO4, PO5	PSO1, PSO2	С	C, P

List of Experiments:

Sr. No.	Title	COs	POs	PSOs	Marks
1	Review of CAD modeling technique and Introduction to	CO1	PO1	-	2
	Rapid prototyping				
2	Generating STL files from the CAD models & Working	CO2	PO3,	PSO1,	3
	on STL files.		PO5	PSO2	
3	Processing the CAD data in Catalyst software (Selection	CO2	PO3,	PSO1,	3
	of Orientation, Supports generation, Slicing, Tool path		PO5	PSO2	
	generation)				
4	Simulation in Catalyst Software	CO3	PO5	PSO1,	3
				PSO2	
5	Fabrication the physical part on a RP machine	CO3	PO5	PSO1,	3
				PSO2	
6	Learning techniques for fabricating an assembly.	CO4	PO3,	PSO1,	3
			PO5	PSO2	
7	Prepare a CAD model with complex geometry and Study	CO5	PO3,	PSO1,	3
	effect of slicing parameters on final product		PO4,	PSO2	
	manufactured through RP.		PO5		

List of Experiments on virtual Lab:

Sr. No.	Title	Link	COs	POs	PSOs
1	FDM Anatomy of 3D Printer Machine	https://3dp- dei.vlabs.ac.in/exp/simulation- anatomy-fdm/	CO3	PO5	PSO1, PSO2
2	Cartesian 3D Printer Machine	https://3dp- dei.vlabs.ac.in/exp/simulation- cartesian-system/	CO3	PO5	PSO1, PSO2
3	Polar 3D Printing machine	https://3dp- dei.vlabs.ac.in/exp/simulation- of-polar-machine/	CO3	PO5	PSO1, PSO2
4	Delta 3D Printing machine	https://3dp- dei.vlabs.ac.in/exp/simulation-	CO3	PO5	PSO1,

		of-delta-machine/			PSO2
5	Simulation of Stereolithography Process	https://3dp- dei.vlabs.ac.in/exp/simulation- stereolithography-process/	CO3	PO5	PSO1, PSO2
6	Simulation of Fused Deposition Modelling (FDM) Process	https://3dp- dei.vlabs.ac.in/exp/simulation- modelling-process/index.html	CO3	PO5	PSO1, PSO2
7	Simulation of Selective Laser Sintering (Non-Metal) Process	https://3dp- dei.vlabs.ac.in/exp/simulation- laser-sintering-nonmetal/	CO3	PO5	PSO1, PSO2
8	Simulation of Selective Laser Sintering (Metal) Process	https://3dp- dei.vlabs.ac.in/exp/simulation- laser-sintering-metal/	CO3	PO5	PSO1, PSO2
9	Simulation of Laminated object manufacturing Process	https://3dp- dei.vlabs.ac.in/exp/simulation- laminated-object/	CO3	PO5	PSO1, PSO2
10	Simulation of Powder Binding / Jetting Process	https://3dp- dei.vlabs.ac.in/exp/simulation- powder-binding/	CO3	PO5	PSO1, PSO2

Online Links:

- 1. https://nptel.ac.in/courses/112/104/112104265/
- 2. <u>https://www.youtube.com/watch?v=KJj8CfnC0Ek</u>
- 3. <u>https://www.youtube.com/watch?v=S6P7fOwV04Q</u>
- 4. https://nptel.ac.in/courses/112/107/112107078/

Software:

1. Catalyst software

Journals referred:

- 1. DOI: 10.17729/ebis.2018.1/3
- 2. DOI 10.1108/RPJ-11-2012-0101
- 3. DOI: 10.18535/ijsrm/v5i1.07