MECHANICAL ENGEINEERING DEPARTMENT

B.E. Semester -VII

Internal Combustion Engines (Professional Elective V) (3171923)

ASSIGNMENT - 03- Fuel supply in SI Engine (CO-1)

<u>Theory</u>

SR. 1.	Question What is the meaning of Stoichiometric A/F ratio for any fuel?	Blooms Taxonomy level	Maximum marks
	Find the value of Stoichiometric A/F ratio for fuel, isooctane (C_8H_{18}) .	R	5
3.	Show how a simple carburetor works and Discuss its fundamental fault.	U	5
2.	Derive equation of air fuel ratio for simple carburetor if air is assumed to be incompressible. (make an approximate analysis)	U	5
4.	Discuss various conditions of Engine working and mention the typical requirement of A/F ration for each	U	5

Examples

SR.	Data	Blooms Taxonomy level	Maximum marks
1	A simple carburetor has a throat diameter 8cm and coefficient of	-	
	discharge 0.94. The diameter and Coefficient of discharge for fuel		
	orifice is 0.5cm and 0.7 respectively. Determine the A/F ration if the		
	pressure drop at the throat is 0.14bar when		
	a) Effect of Nozzle tip is neglected.	U	5
	b) Effect of Nozzle tip 0.5cm considered		
	Assume the density of Fuel 780 kg/m ³ and that of air is 1.3 kg/m^3		
	Neglect the compressibility of Air		
2	An engine is supplied fuel air mixture with A/F ratio 15.4:1. Per hour		
	this engine consumes 7.5 kg of fuel. Throat diameter of venture is 2.2		
cm. The atmospheric pressure is 1.013 bar at bar at 25°C			
	Find the diameter of fuel orifice which has nozzle tip of 4mm.	U	5
	Consider :		
	• Density of Fuel = 750 kg/m^3		
	• C_d for air and fuel = 0.82 and 0.7 respectively		

Vision:				
	To de	liver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.		
Mission				
	•	To nurture engineers with basic and advance mechanical engineering concepts		
	٠	To impart Techno-Managerial skill in students to meet global engineering challenges		
	•	To create ethical engineers who can contribute for sustainable development of society		