

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171917 DESIGN OF MACHINE ELEMENTS B.E. 7thSEMESTER

Type of course: Professional Core

Prerequisite: None.

Rationale: The course aims to impart basic skills of force and stress analysis for design of machine

elements.

Teaching and Examination Scheme:

	Tea	ching Sch	neme	Credits	Examination Marks				Total
	L	T	P	C	Theory Marks		Practical Marks		Marks
					ESE (E)	PA (M)	ESE (V)	PA (I)	
	3	0	2	4	70	30	30	20	150

NOTE:

1. University theory exam duration is 3 hours.

2. PSG design data book is permitted during university exam.

Content:

Sr. No.	Content	Total Hrs
1	Design Considerations	02*
	Standardization, Preferred numbers, Tolerances and Fits, Ergonomics, System design,	
	Manufacturing considerations.	
2	Design of Coupling	04
	Types of coupling, Design of Muff coupling, Clamp coupling, Rigid flange coupling and	
	Bush pin type flexible coupling	
3	Spring	05
	Types of spring, Stress and deflection equations, Design of helical spring, Concentric	
	springs, Design of Multi-leaf spring	
4	Pressure vessels	05
	Thin cylinder, Thin spherical vessels, Thick cylinders, Lame's equation, Clavarino's and	
	Birnie's equations, Cylinder with external pressure, Autofrettage, Compound cylinder.	
5	Rolling contact bearings**	04
	Types of rolling-contact bearings, Selection of bearing type, Static load carrying capacity	
	of bearing, Dynamic load carrying capacity of bearing, Equivalent bearing load, Load-life	
	relationship, Selection of bearing from manufacturer's catalogue, Bearing with probability	
	of survival other than 90 percent, Design for cyclic load	
6	Sliding contact bearings**	04
	Basic mode of lubrication, Measurement of viscosity, Viscosity index, Petroff's equation,	
	McKee's equations, Interpretation of Reynold's equation, Difference between	
	hydrodynamic and hydrostatic bearing, Performance parameters for journal bearings,	
	Bearing design – selection of parameters for journal bearing	10
7		
	Classification of gears, Selection of type of gears, Standard system of gear tooth, Force	
	analysis, Gear tooth failures, selection of material, Beam strength of gear tooth, Wear	

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171917

	strength of gear tooth, Virtual number of teeth, Thermal considerations for worm gear.	
8	Speed Gear box	06
	Various laws of stepped Regulation, Standard values of G. P. ratio and guidelines for	
	selecting a proper value, Break up of speed steps, Structural diagram and their analysis to	
	select the best possible version, Speed chart, General recommendations for developing the	
	gearing diagram, Determine the no. of teeth of gear.	
9	Design of Mechanisms	07
	Valve gear mechanism for IC engine, Hoisting tackle analysis, Wire rope design ,Crane	
	hook Assembly	

^{*} Topic 1 should be covered during tutorial class.

Reference Books:

- 1. Design of Machine Elements, V B Bhandari, 3/e, Tata McGraw Hill.
- 2. A Textbook of Machine Design, P C Sharma and D K Aggarwal, S K Kataria & sons.
- 3. Shigley's Mechanical Engineering Design, R G Budnyas, J K Nisbett, McGraw Hill.
- 4. Fundamentals of Machine Component Design, R C Juvinall, 4/e, Wiley.
- 5. Machine Design: An Integrated Approach, R L Norton, Pearson
- 6. Machine Tool Design and Numerical Control, N K Mehta, Tata McGraw Hill Edu.
- 7. Design Data, Faculty of Mechanical Engineering, PSG College of Engineering, Coimbatore.

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	Marks
	% weightage
Recall	10
Comprehension	10
Application	25
Analysis	45
Evaluate	5
Create	5

Course Outcome:

After learning the course the students will be able to:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Relate various standard used in industry and utilize knowledge of manufacturing process in design of machine elements.	05

^{**} Use PSG design data book for equations/data/chart.

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171917

CO-2	Determine forces acting on machine elements like couplings,	40
	springs, gears, bearings and perform stress analysis for machine	
	components.	
CO-3	Estimate life of rolling element bearings and determine performance	15
	parameters of sliding contact bearings.	
CO-4	Evaluate speed variation on gear box shafts and optimize fluctuation	10
	of shaft speeds in gear box.	
CO-5	Design and dissect mechanisms for strength and improve their life.	30

List of Experiments:

Experiments should cover all topics discussed in subject content. Like.

- 1. Design of rigid and flexible couplings.
- 2. Design of helical and leaf springs.
- 3. Design of two stage gear box including gear design, bearing selection.
- 4. Design of pressure vessels.

Major Equipment:

Computational facility.

List of Open Source Software/learning website:

http://nptel.ac.in