Lukhdhirji Engineering College, Morbi Mechanical Engineering Department 5th Semester Dynamics of Machinery Asssignment: Dynamic force analysis of mechanisms (CO1)

1	Define inertia force and inertia couple. State D' Alembert principle.
2	What are the requirements of an equivalent dynamically system?
3	The crank and connecting rod of a vertical single cylinder gas engine running at 1800
	rpm are 60 mm and 240 mm respectively. The diameter of piston is 80 mm and the mass
	of the reciprocating parts is 1.2 kg. At a point during the power stroke when the piston
	has moved 20 mm from the top dead center position, the pressure on the piston is 800
	kN/m ² . Determine
	1. Net force on the piston
	2. Thrust in the connecting rod
	3. Thrust on the sides of cylinder walls
	4. Engine speed at which the above values are zero.
4	The crank and connecting rod of a steam engine are 300 mm and 1500 mm in length
	respectively. The crank rotates at 180 rpm clockwise. Determine the velocity and
	acceleration of the piston when the crank is at 40 degrees from the inner dead center
	position. Also determine the position of the crank for zero acceleration of the piston.
5	The following data relate to a horizontal reciprocating engine: Mass of reciprocating
	parts = 120 kg, Crank length = 90 mm, Engine speed = 600 rpm, Connecting rod Mass
	= 90 kg, Length between centres $= 450$ mm, Distance of center of mass from big end
	centre = 180 mm , Radius of gyration about an axis through centre of mass = 150 mm .
	Find the magnitude and the direction of inertia torque on the crankshaft when the crank
	has turned 30° from the inner dead centre.
6	In a slider crank mechanism, the length of the crank and connecting rod are 150 mm and
	600 mm respectively. The crank position is 60° from the dead center. The crank shaft
	speed is 450 r.p.m. (clock wise). Using analytical method, determine: I). Velocity and
	acceleration of the slider. And II). Angular velocity and angular acceleration of the
	connecting rod