GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2022 Subject Code:3151910 **Subject Name:Operation Research**

Time:10:30 AM TO 01:00 PM

Total Marks:70

Date:19-01-2023

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

								MARK	
Q.1	(a) (b) (c)	State and ex Write the ge Find the ma Subj	plain various neral mathen aximum valu ect to:	s characteris matical form ue of $Z =$ $X_1 + 2 X_2$ $3X_1 + X_2$ $4X_1 + 3X_2$	tics of Linea ulation of a $20 X_1 + 10$ $2 \le 40$ ≥ 30 ≥ 60	ar Programm LP Problem X ₂ by gra Where,	ing. phical method; $X_1, X_2 \ge 0.$	03 04 07	
O.2	(a)	Briefly expla	ain 'Decision	n Tree'.				03	
-	(b)	Discuss the difference between decision-making under certainty and under conflict.							
(c) Describe the computational procedure of Two-phase method.								07	
	(c) Solve the following problem by simplex method:								
		Max	imize; $Z = 3$	$X_1 + 2X_2 + 3$	$5X_3$, ,			
		Subject to: $X_1 + 2X_2 + X_3 \le 430$							
		$3X_1 + 2X_2 < 460$							
				$X_1 + $	$4X_2 \le 420.$	Where, 2	$X_1, X_2 \geq 0.$		
Q.3	(a)	Briefly explain about unbalanced assignment problems.							
	(b)	Describe the	procedure t	o solve trave	elling salesm	nan problem.		04	
	(c)	Solve the fo	llowing tran	sportation p	roblem. Obt	ain the initia	l basic feasible	07	
		solution by	√ogel's metl	nod and opti	mal solution	h by MODI n	nethod.		
			<u>M</u> 1	<u>M2</u>	<u>M</u> 3	M4	Supply		
		F ₁	3	2	4	1	20		
		F ₂	2	4	<u> </u>	3	15		
		F 3	3	2	<u> </u>	0	<u> </u>		
		F4	4	<u> </u>	1 25	4	40		
		Demand	30	20	23 OD	23			
Q.3	(a)	Explain: Tra	nsportation	problems wi	th prohibite	d routes.		03	
	(b)	What are trans-shipment problems? Explain with suitable example. 0						04	
	(c) Solve the following assignment problem.							07	

(c) Solve the following assignment problem. Inha

JODS							
Workers	А	В	С				
1	110	140	60				
2	80	100	110				
3	90	120	70				
4	100	130	80				

Q.4	(a) Explain the queuing model as indicated by the following notations. $M/D/1 \cdot FCFS/\infty/\infty$								
	(b)	Define: Queue and give its classification. Mention applications of each type							
		of queue.							
	(c)	Solve the following 4 X 4 game using rule of dominance.							
		Player B							
		I II III IV							
		\mathbf{I} $\begin{bmatrix} 3 & 5 & 4 & 2 \end{bmatrix}$							
		Player A II 5 6 2 4							
		$\mathbf{III} 2 1 4 0$							
		IV 3 3 5 2							
		OR							
0.4	(a)	List the different methods for solving Game Problems.							
	(b)	Write the important assumptions of "Game Theory".							
	(c)	Vehicles arrive at a toll-booth at a rate of 8 per minute. The serving capacity 0							
		of operator at toll-booth is 10 vehicles per minute. Find out (i) utilization							
		factor (ii) idle time for booth operator in an 8 hour shift (iii) number of							
		vehicles waiting in the system (iv) number of persons waiting in the queue							
		(v) average waiting time in the queue and (vi) total time spent by a vehicle							
		in the system.							
0.5	(a)	Define event, activity and dangling with respect to project management.	03						
L	(b)	Explain D.R. Fulkerson's rule for network diagram.							
	(\mathbf{c})	A vehicle having initial cost of Rs. 50 000 has the following data based on 0°							
	(•)	nast experience.							
		Vear 1 2 3 4 5 6 7							

Year	1	2	3	4	5	6	7
Maintenance	5,000	6,000	7,000	9,000	11,500	16,000	18,000
cost in Rs.							
Resale value	30,000	15,000	7,500	3,750	2,000	2,000	2,000
in Rs.							

Calculate replacement time of the vehicle.

OR

- **Q.5** (a) Describe some important replacement situations.
 - (b) Differentiate between CPM and PERT.
 - (c) Determine the critical path for given project schedule and find out total float07 for each event.

Activity	Time (weeks)	Activity	Time (weeks)
1-2	10	4-6	9
1-3	6	4-8	8
1-4	7	5-7	7
2-5	3	6-7	15
2-6	3	7-9	4
3-8	12	8-9	6

03

04