GOVERNMENT OF GUJARAT

LUKHDHIRJI ENGINEERING COLLEGE, MORBI

Mechanical Engineering Department

Course Teaching-Learning-Evaluation Strategy

Subject: Operation Research (3151910) Class: 5th Semester

Academic Year: 2023-24(Odd) Faculties: M B Vaghela (MBV), I B Shah (IBS)

Course Outcomes (Cos)

CO Nos.	CO statement	Weightage (Marks %)
CO-1	Develop models for optimizing the management and production systems from the verbal description of the real system.	10
CO-2	Make use of LPP techniques for optimization of Production mix problem in industry.	20
CO-3	Evaluate transportation, transhipment, assignment and travelling salesman and Queuing problem.	30
CO-4	Apply quantitative techniques in machine replacement, game theory, business decision making under conditions of certainty, risk and uncertainty	20
CO-5	Demonstrate Project management Problem.	20

Teaching and Examination Scheme:

Tea	aching	Scheme	Credits	Examination Marks				Examination Marks			Tatal
т	т	р	C	Theory Marks		Practical	Marks	Total Morka			
L	1	r	C	ESE(E)	PA(M)	ESE(V)	PA(I)	Marks			
3	0	0	3	70	30	0	0	100			

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	Reme mber	Under stand	Application	Analysis	Evaluate	Create
Marks% weightage	10	10	30	30	20	

Course Content with lecture plan:

Sr.	chapter	Course	Lecture(s)	Faculty
No.	•	outcome(s)	required	•
1.	Operations Research:	CO1, CO2	12	MBV
	Origin of Operation Research, Historical Standpoint,			
	Methodology, Different Phases, Characteristics, Scope			
	and Application of Operations Research.			
	Linear Programming Problem:			
	Introduction, Requirement of LP, Basic Assumptions,			
	Formulation of LP, General Statement of LP, Solution			
	techniques of LP: Graphical Methods, Analytical			
	Methods: Simplex, Big M and Two Phase, Special Case			
	of LP Problem, Graphical Sensitivity Analysis.			
	Introduction of Primal and Dual Problems, Economic			
	Interpretation. Introduction of Goal and Integer			
	Programing.			
	Dynamic Programming: Steps involved in dynamic			
	programming, characteristics and explanation of			
	dynamic programming, formulation of Deterministic and			
	probabilistic dynamic programming.			
2.	Transportation and Assignment:	CO3	9	MBV
	Transportation Problems definition, Linear form,	005		
	Solution methods: North west corner method, least cost			
	method, Vogel's approximation method. Degeneracy in			
	transportation, Modified Distribution method,			
	Unbalanced problems and profit maximization problems.			
	Transhipment Problems. Assignment Problems and			
	Travelling sales man Problem.			
3.	Queuing Theory:	CO3	11	MBV
	Basis of Queuing theory, elements of queuing theory,			
	Kendall's Notation, Operating characteristics of a			
	queuing system, Classification of Queuing models,			
	Preliminary			
	examples of M/M/1:∞/∞/FCFS			
4.	Replacement theory:	CO4	04	MBV
	Introduction, Replacement of capital equipment which			
	depreciated with time, replacement by alternative			
	equipment, Group and individual replacement policy.			
5.	Game Theory:	CO4	04	IBS
	Introduction, Characteristics of Game Theory, Two			
	Person, Zero sum games, Pure strategy. Dominance			
	theory, Mixed strategies (2x2, M x2), Algebraic and			
	graphical methods.			

6.	Decision Theory:	CO4	04	IBS
	Introduction, Decision under certainty, Decision under			
	risk, Decision under uncertainty: Laplace criterion,			
	MaxiMin criterion, MiniMax criterion, savage MiniMax			
	regret criterion, Hurwicz criterion, Decision tree.			
7.	Project Management:	CO5	08	IBS
	Introduction to PERT and CPM, Critical Path			
	calculation, float calculation and its importance. Cost			
	reduction by Crashing of activity.			

Reference Books:

1. Operations Research: An Introduction by HamdyTaha, Pearson Education Inc

2. Operations Research: Principles and Practice by Pradeep PrabhakarPai, Oxford Higher Education, Oxford University press

3. Operations Research: Principles and Practice by Ravindran Phillips and Solberg by Wiley India Edition,

- 4. Operations Research by P Mariappan, Pearson
- 5. Operations Research by A M Natarajan, P Balasubramani, A Tamilarasi, Pearson Education Inc
- 6. Operations Research by H N Wagner, Prentice hall.
- 7. Optimization in Operations Research by Ronald Rardin, Pearson Education Inc.
- 8. Operations Research by R. Paneerselvam, Prentice Hall of India Pvt. Ltd.
- 9. Quantitative Techniques in Management by N D Vohra, Tata McGraw-Hill

Course Evaluation Plan

	Inte	External(Uni	.)			
		1 1		Evaluation		
	Mid Sem Exam (continue evaluation) (Theory)	Assignmen t/ Quiz	Lab. Wor k	Practical / Viva (IF)	Uni. Exam (Theory)	
Max. Marks	20	10	NA		70	
Weightage		30%		7	0%	
CO1	2					
CO2	8	1				
CO3	5	3				
CO4	5	2				
CO5	0	4				

Course articulation matrix correlation

CO No.	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO1	PO1	PO1	PSO	PSO
CO1	3	2												
CO2		3	2											
CO3		3	2											
CO4		2	3											
CO5		2	2											

Justification(s) of correlation between Co and Pos/PSOs

Mapping	Justification(s
3151910-1	CO1 mapped with PO1 & PO2 because through CO1 students shows
WITH PO1,	ability to apply basic engineering knowledge and fundamentals and
PO2,	formulate model.
3151910-2	CO2 mapped with PO2 and PO3 because students using principle of
WITH PO2,	mathematics for analysis and developing model as well as solution for
РОЗ,	product mix.
3151910-3	CO2 mapped with PO2 and PO3 because students using principle of
WITH PO2,	mathematics for analysis and developing model as well as solution for
PO3,	transportation assignment and queuing problem.
3151910-4	CO4 mapped with PO2 and PO3 because students will apply
WITH PO2,	quantitative techniques for replacement, game kind of problem for
PO3,	business decision making
3151910-5	CO5 manned with PO2 PO3 because students demonstrate decision
WITH PO2,	CO5 mapped with PO2, PO3 because students demonstrate decision making ability on project management problems
PO3,	making ability on project management problems

Tagging of Cos with POs, PSOs, Cognitive Level, Knowledge Categories and the number of sessions (R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create)

CO	Statement	POs	PSOs	Cognitive	Knowledge
No.				Level	Categories
CO1	Develop models for optimizing the management and production systems from the verbal description of the real system.	1,2		U	
	Make use of LPP techniques for	2,3			
CO2	optimization of Production mix problem in industry.	2,5		А	
	Evaluate transportation, transhipment,	2,3		Е	
CO3	assignment and travelling salesman and Queuing problem.				
	Apply quantitative techniques in machine			А	
CO4	replacement, game theory, business	2,3			
	decision making under conditions of certainty, risk and uncertainty				
CO5	Demonstrate Project management Problem.	2,3		А	