

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3142407

Semester – IV (Power Electronics) Subject Name: Control Theory

Type of course: Professional Core Course.

Prerequisite: Mathematics, Physics, Circuit Theory

Rationale: Automatic control of industrial processes is essential for increasing the output and in turn the profit of an industry. As a result, most of the companies are using automatic control of the machineries and processes. As an engineer, a student must know the basics of automatic control system. This subject is intended to supplement the basic skill of an engineer.

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks				Total	
L	Т	Р	C	Theory Marks Practical Marks		Iarks		
				ESE (E)	PA (M)	ESE (V)	PA (I)	Marks
3	0	2	4	70	30	30	20	150

Contents:

Sr.	Content	Total	%
No.		Hrs	Weightage
1	Introduction to Control Systems: Introduction, Historical development, terminology of control system, examples of Control Systems, Closed-Loop Control Versus Open-Loop Control, concept of design and compensation of Control Systems	4	10
2	Mathematical Modeling of Control Systems: Transfer Function and Impulse- Response Function, Automatic Control Systems, Modeling in State Space, State-Space Representation of Scalar Differential Equation Systems, Transformation of Mathematical Models, Linearization of Nonlinear Mathematical Models, Mathematical Modeling of Mechanical Systems, Mathematical Modeling of Electrical Systems	8	15
3	Transient and Steady-State Response Analyses: Type and Order of systems, First-Order Systems, Second-Order Systems, Higher-Order Systems, Transient-Response Analysis, Routh's Stability Criterion, Concept of Integral and derivative controls and their Effects on System Performance, Steady-State Errors in Unity-Feedback Control Systems	8	15
4	Root-Locus Method of Control System Analysis and design: Introduction, Root-Locus Plots, Root-Locus Plots of Positive Feedback Systems, Root-Locus Approach to Control-Systems Design, Lead Compensation, Lag Compensation, Lag–Lead Compensation, Parallel Compensation	8	20

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3142407

5	Frequency-Response Methods of Control System Analysis and Design: Introduction, Bode Diagrams, Polar Plots, Log-Magnitude-versus-Phase Plots,	8	20
	Nyquist Stability Criterion, Stability Analysis, Relative Stability Analysis, Closed-Loop Frequency Response of Unity-Feedback Systems, Experimental		
	Determination of Transfer Functions, Control Systems Design by Frequency- Response Approach, Lead Compensation, Lag Compensation, Lag-Lead		
	Compensation		
6	Controllers and Tuning:	8	20
	Introduction and classification, Ziegler–Nichols Rules for Tuning PID		
	Controllers, Design of PID Controllers with Frequency-Response Approach, Design of PID Controllers with Computational Optimization Approach		
	Modifications of PID Control Schemes, Two-Degrees-of-Freedom Control,		
	Zero-Placement Approach to Improve Response Characteristics		

Suggested Specification table with Marks (Theory):

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
20	30	20	20	10	-	

C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1) M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education.
- 2) B. C. Kuo, "Automatic Control System", Prentice Hall
- 3) K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.
- 4) J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.
- 5) A. Anand kumar, "Control Systems" PHI Pvt. Ltd, 2014.

Course Outcomes:

After studying this course, students should be able to

Sr. No.	CO statement	Marks % weightage	Topics Mapped
CO-1	categorize different types of control system and identify a set of algebraic equations to represent and model a real system into simple form.	15	CO-1
CO-2	characterize any system in Laplace domain to illustrate different specification of the system using transfer function concept.	15	CO-1, CO-2,
CO-3	interpret different physical and mechanical systems in terms of electrical system to construct equivalent electrical models for analysis.	20	CO-4

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3142407

CO-4	employ time domain analysis to predict and diagnose transient performance parameters of the system for standard input functions.	20	CO-6			
CO-5	formulate different types of analysis in frequency domain to explain the nature of stability of the system.	20	CO-5, CO-6			
CO-6	identify the needs of different types of controllers and compensator to ascertain the required dynamic response from the system.	10	CO-6			

Suggested List of Experiments:

All experiments are based on simulation software like OCATVE, SCILAB, MATLAB etc.

- 1. Study of transfer function
- 2. Study time response analysis
- 3. Study of model simplification
- 4. Study of pole-zero location and stability
- 5. Study of Root Locus
- 6. Study of Bode Plot
- 7. Study of Nyquist Plot

List of Open Source Software/learning website:

- OCTAVE https://www.gnu.org/software/octave/
- SCILAB www.scilab.org
- Swayam- https://swayam.gov.in/
- NPTEL- https://onlinecourses.nptel.ac.in/
- Mooc- http://mooc.org/
- Edx https://www.edx.org/
- Coursera- https://www.coursera.org/
- Udacity https://in.udacity.com/ Udemy - https://www.udemy.com/
- Khanacademy https://www.khanacademy.org/
- Skillshare https://www.skillshare.com/
- Harvard University https://online-learning.harvard.edu/
- Ted https://ed.ted.com/
- Alison https://alison.com/
- Futurelearn https://www.futurelearn.com/
- Open Learn http://www.open.edu/openlearn/
- Future Learn https://www.futurelearn.com/
- Tuts Plus https://tutsplus.com/
- Open Culture http://www.openculture.com/