L.E.College – Morbi MechanicalEngineeringDepartment GTU ReMID Exam May 2023

SUBJECT NAME: Fundamental of Machine DesignSUBJECT CODE:Date: 01/06 /2023Time: 11:00 to 12:3		1907	,	
Q.1 a) Explain the following terms:		3	CO1	R
1. Mass Moment of Inertia 2. Section module	2S			
b) Explain the Parallel axis theorems for moment of	inertia.	3	CO1	U
c) Determine the moment of inertia of following sect axes.	tion about X-X and Y-Y	4	CO1	Α
20 mm				

 $\frac{\downarrow}{20 \text{ mm}}$ 2 **←**80 mm →

Q.2	Explain stress and strain relationship with graph.	5	CO1	U
	OR			
Q.2	Derive the equation for simple (or pure) bending. Also state the assumptions in this derivation.	5	CO1	U
Q.3	Explain maximum principal stress theory in detail. The load on a bolt consists of an axial pull of 10 kN together with a transverse shear force of 5 kN. Find the diameter of bolt required according to (1). Maximum principal stress theory; (2). Maximum shear stress theory	8	CO2/ CO3	Α
	OR		~~~	
Q.3	Why taper is provided on cotter? What is its normal value? State its applications. Design a knuckle joint to transmit load of 100 kN. The design stresses may be taken as 75 MPa in tension, 60 MPa in shear and 150 MPa in compression.	8	CO2/ CO3	Α
Q.4	 Find the diameter of a solid steel shaft to transmit 20 kW at 200 r.p.m. The ultimate shear stress for the steel may be taken as 360 MPa and a factor of safety as 8. If a hollow shaft is to be used in place of the solid shaft, find the inside and outside diameter when the ratio of inside to outside diameters is 0.5. 	7	CO2 & CO3	Α
Q.4	A solid shaft is transmitting 1 MW at 240 r.p.m. Determine the diameter of the shaft if the maximum torque transmitted exceeds the mean torque by 20%. Take the maximum allowable shear stress as 60 MPa.	7	CO2 & CO3	Α