LUKHDHIRJI ENGINEERING COLLEGE, MORBI
 GENERAL DEPARTMENT
 SUBJECT: CV\& PDE(3140610) Civil SEM-4

Tutorial: 1 (Complex Number \& Function)

Q-1 Attempt the following:

1. Show that if c is any nth root of unity other than unity itself, then $1+\mathrm{c}+\mathrm{c}^{2}+\cdots---\mathrm{c}^{\mathrm{n}-1}=0$
2. Find and plot all roots of $\sqrt[3]{8 i}$
3. Solve the equation $z^{2}-(5+i) z+8+i=0$
4. Find and plot all the roots of $(1+i)^{1 / 3}$
5. Find all solutions of $\sin z=2$
6. Find all roots of the equation $\log z=\frac{i \pi}{2}$
7. Show that $\cos (i \overline{-})=\overline{\cos (i z)}$ for all z .
8. Find the Principal argument of $z=\frac{-2}{1+i \sqrt{3}}$
9. Find the Principal Value of $\left[\frac{e}{2}(-1-i \sqrt{3})\right]^{3 \pi i}$
10. Define $\log (\mathrm{x}+\mathrm{iy})$.Determine $\log (1-\mathrm{i})$.
11. Find real and imaginary part of $(-1-i)^{7}+(-1+i)^{7}$

Q-2 Attempt the following:
i) State the necessary and sufficient condition for a function to be analytic and prove the necessary condition.
ii) Show that if $f(z)$ is analytic in a domain D and $|f(z)|=k=$ const. in D, then $f(z)=$ const. in D.
iii) Check whether the following functions are analytic or not.
(a) $f(z)=z^{5 / 2}$
(b) $\mathrm{f}(\mathrm{z})=\bar{z}$
iv) \quad Show that $f(z)=z \operatorname{Im}(z)$ is differentiable only at $z=0$ and $f^{\prime}(0)=0$.
v) Check whether the function $f(z)=\sin \mathrm{z}$ is analytic or not. If analytic, find its derivative.
vi) Check whether the following functions are analytic or not at any point: (a) $\mathrm{f}(\mathrm{z})=e^{z} \quad$ (b) $\mathrm{f}(\mathrm{z})=$ $2 x+i x y^{2}$
vii) Simplify the following using DeMoivre's theorem.

$$
\begin{array}{ll}
\text { (1) } \frac{(\cos 2 \theta+i \sin 2 \theta)^{\frac{3}{2}}(\cos \theta-i \sin \theta)^{3}}{(\cos 3 \theta-i \sin 3 \theta)^{2}(\cos 5 \theta-i \sin 5 \theta)^{\frac{2}{5}}} & \text { (2) }(1+i \sqrt{3})^{90}+(1-i \sqrt{3})^{90}
\end{array}
$$

viii) Determine a such that function $u=e^{a x} \cos 5 y$ is harmonic and find a conjugate harmonic.

LUKHDHIRJI ENGINEERING COLLEGE, MORBI
 GENERAL DEPARTMENT
 SUBJECT: CV\& PDE(3140610) Civil SEM-4

Tutorial: 2 (Complex Integration)

1. Evaluate by using the definition of an integral as the limit of a sum
a. (i) $\int_{c} d z$
(ii) $\int_{C}|d z|$
(iii) $\int_{C} z d z$
b. Where C is the arc joining the points $\mathrm{z}=a$ and $\mathrm{z}=\mathrm{B}$.
2. Evaluate $\int_{C}\left(x^{2}+i x y\right) d z$ from $(1,1)$ to $(2,4)$ along the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}$.
3. (Important Little Integral)
a. Prove that (i) $\oint_{c} \frac{d z}{z-a}=2 \pi i$ (ii) $\oint_{c}(z-a)^{n} \mathrm{dz}=0$ [n is an integer $\neq-1$]
b. Over the circle $|\mathrm{z}-\mathrm{a}|=\mathrm{r}$
4. Evaluate $\int_{c} \frac{z+2}{z} d z$ where C is the semi circle $|\mathrm{z}|=2$.
5. Evaluate $\int_{C}\left(z-z^{2}\right) d z$, where c is the upper half of the circle $|\mathrm{z}|=1$.
6. Evaluate: $\iint_{c} \frac{z^{2}+5}{z-3} d z$, where C is the circle $|\mathrm{z}|=4$.
7. Evaluate: $\int_{c} \frac{e^{z}}{z^{2}+1} d z$, where C is the circle $|\mathrm{z}|=2$.
8. Evaluate: $\iint_{c} \frac{z d z}{z^{2}-1}$ where C is the circle $|\mathrm{z}|=2$.
9. Evaluate: $\int_{c} \frac{z+4}{z^{2}+2 z+5} d z$, where C is the circle $|\mathrm{z}+1|=1$.
10. Evaluate $\int_{c} \frac{e^{-z}}{z+1} d z$, Where C is the circle (1) $|\mathrm{z}|=1 / 2 \quad$ (2) $|\mathrm{z}|=2$
11. Evaluate: $\int_{c} \frac{z-1}{(z+1)^{2}(z-2)} d z$, where C is the circle $|\mathrm{z}-\mathrm{i}|=2$
12. Evaluate: $\int_{c} \frac{\cos \pi z^{2}}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$
13. Evaluate: $\iint_{c} \frac{z}{z^{2}+1} d z$, where C is the circle (1) $|\mathrm{z}+1 / \mathrm{z}|=2$ (2) $|\mathrm{z}+\mathrm{i}|=1$
14. Evaluate: $\int_{c} \frac{3 z^{2}+z}{z^{2}-1} d z$, where C is the circle $|\mathrm{z}-1|=1$

LUKHDHIRJI ENGINEERING COLLEGE, MORBI
 GENERAL DEPARTMENT
 SUBJECT: CV\& PDE(3140610) Civil SEM-4

15. Evaluate: $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$
16. Evaluate: $\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$, where C is the circle $|\mathrm{z}|=3 / 2$
17. Let C denote the boundary of the square whose sides lie along the lines $x= \pm 2 \& y= \pm 2$ where C is described in positive sense. . Evaluate
(1) $\oint_{c} \frac{z}{2 z+1} d z$
(2) $\oint_{c} \frac{\cos z}{z\left(z^{2}+8\right)} d z$
18. Evaluate: $\int_{c} \frac{z d z}{\left(9-z^{2}\right)(z+i)}$, where C is the circle $|\mathrm{z}|=2$
19. Evaluate: $\int_{c} \frac{e^{2 z}}{(z+1)^{4}} d z$, Where C is the circle $\left.|z|=2\right]$
20. Evaluate: $\int_{c} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$, where C is the circle $|z|=1$
21. Evaluate the integral $\int_{c} \frac{z d z}{z^{4}-1}$, where C is the circle $|\mathrm{z}-2|=2$
22. Evaluate: $\int_{c} \frac{1}{\left(z^{3}-1\right)^{2}} d z$, where C is the circle $|z-1|=1$

LUKHDHIRJI ENGINEERING COLLEGE, MORBI
 GENERAL DEPARTMENT
 SUBJECT: CV\& PDE(3140610) Civil SEM-4

Tutorial: 3 (Power Series and Residue)

1. Expand $f(z)=\frac{1}{z}$ in Taylor series about $z_{o}=1$
2. What is the ROC of the Taylor series of $\frac{1}{z^{2}-3 z+2}$ about $\mathrm{z}=3 \mathrm{i}$.
3. Expand $\frac{1}{z\left(z^{2}-3 z+2\right)}$ about $\mathrm{z}=0$ for the region a) $1<|z|<2 \quad$ b) $|z|=2$
4. Obtain the Taylor and Laurent series which represent the function
$\frac{z^{2}-1}{(z+2)(z+3)}$ in the region $\left.\left.\left.a\right)|z|<2 \quad b\right)|z|>3 \quad c\right) 2<|z|<3$
5. Find the residue of the function $\mathrm{f}(\mathrm{z})=\frac{1}{z^{4}+1}$
6. Find the residue at the singular point $a) \frac{1}{z^{4}+z^{3}-2 z^{2}} \quad$ b) $\frac{z}{z^{2}+16}$
7. Using Cauchy's residue thm. (Counter clockwise) Evaluate the following integrals
a. $\oint_{C} \frac{2 z+6}{z^{2}+4} d z, C:|z-i|=2$
b. $\oint_{C} \frac{e^{z}}{z^{4}+5 z^{3}} d z, C:|z|-2$
8. Determine the residues of $f(z)=\frac{3 z-4}{z(z-1)(2-2)}$ at each of its poles in the finite z-plane
9. Determine the residues at each poles
(a) $\left(\frac{z+1}{z-1}\right)^{3}$
(b) $\frac{z+1}{\left(z^{2}-16\right)(z+2)}$ (c)
$\frac{1-e^{2 z}}{z^{4}}$
10. Determine the residue of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$, at each of its poles in the finite z-plane
11. Find the sum of the residues of the function $f(z)=\frac{\sin z}{z \cos z}$ at its poles inside the circle $|z|=2$
12. Determine the residue of $f(z)=\left(\frac{\sin z}{z^{2}}\right)^{3}$ at $\mathrm{z}=0$
13. Cauchy's Residue Theorem Evaluate, $\int_{c} \frac{z}{(2 z-1)^{2}} d z$ where C is the circle.

LUKHDHIRJI ENGINEERING COLLEGE, MORBI
 GENERAL DEPARTMENT
 SUBJECT: CV\& PDE(3140610) Civil SEM-4

Tutorial: 4 (Contour and conformal mapping)

Q-1 Defn. of Bilinear Transformation, Cross ratio, Normal form of Bilinear Transformation, Fixed point.
Q-2 Find Bilinear Transformation which transforms $\mathrm{z}=2,1,0$ into $\mathrm{w}=1,0, \mathrm{i}$
Q-3 Find the bilinear transformation which maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$ into the points $w_{1}=1, w_{2}=i, w_{3}=-1$.
Q-4 Find the bilinear transformation which maps the points $\mathrm{z}=-1,1, \infty$ on $\mathrm{w}=-i,-1$, i .
Q-5 Find the bilinear transformation that maps the points $\mathrm{z}=\infty, \mathrm{i} ., 0$ into the points $\mathrm{w}=0, \mathrm{i} ., \infty$.
Q-6 Determine the bilinear transformation which maps $\mathrm{z}=0,1, \infty$ into $w=\mathrm{i} .,-1,-\mathrm{i}$. respectively. Under this transformation show that the interior of the unit circle of the z-plane maps onto the half plane above the real axis of w-plane.
Q-7 Find the bilinear transformation which maps the points $\mathrm{z}=0,-\mathrm{i} .,-1$ into $\mathrm{w}=\mathrm{i} ., 1,0$ respectively
Q-8 Find the fixed points and the normal forms of the following transformations
(1) $w=\frac{z-1}{z+1}$
(2) $w=-\frac{2 z+4 i}{i z+1}$

$$
\begin{equation*}
w=-\frac{z+4}{2 z+5} \tag{3}
\end{equation*}
$$

(4) $w=-\frac{z-3}{z+1}$

Q-10 Under the transformation $w=\frac{1}{z}$, find the image of $|z-2 i|=2$ in w-plane.
Q-11 Find the image of the triangle with vertices $\mathrm{i}, 1+\mathrm{i}, 1-\mathrm{i}$ in the z plane under the transformation $w=e^{\frac{5 \pi i}{3}} z-2+4 i$.
Q-12 Find the image of the region $\frac{1}{2} \leq x \leq 1$ and $\frac{1}{2} \leq y \leq 1$ mapped by the transformation $w=z^{2}$ in the wplane.
Q-13 Discuss the application of the transformation $w=z^{2}$ to the area in the first quadrant of the z-plane bounded by the axes and the circles $|z|=a,|z|=b$ ($a>b>0$)

Q-14 Show that the transformation $w=\frac{1}{z}$ maps the circle $|z-3|=5$ into the circle $\left|w+\frac{3}{16}\right|=\frac{5}{16}$
Q-15 Find the image of the strip $2<\mathrm{x}<3$ under the transformation $w=\frac{1}{z}$.
Q-16 Find the image of the real axis of the z-plane on the w-plane under the transformation $w=\frac{1}{z+i}$.
Q-17 Show that the transformation $w=i \frac{1-z}{1+z}$ transforms the circle $|\mathrm{z}|=1$ into the real axis of w-plane and the interior of the circle $|z|<1$ into the upper half of the w-plane.
Q. 18 Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$ using the residue theorem.

