Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

Subj	ect (BE - SEMESTER–III (NEW) EXAMINATION – SUMMER 2021 Code:3131906 Date:06/1	10/2021
•	:10	Name: Kinematics and Theory of Machine 30 AM TO 01:00 PM Total Ma	arks:70
mstru	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
0.4			Marks
Q.1	(a) (b)		03 04
	(c)	•	07
Q.2	(a)	List and describe the three phases of synthesis.	03
	(b)		04
	(c)	Derive analytical expression for the displacement and velocity analyses of a slider crank mechanism. OR	07
	(c)	A four bar mechanism is to be designed, by using three precision points, to generate the function $y=x^{1.5}$, for the range $1 \le x \le 4$. Assuming 30° starting position and 120° finishing position for the input link and 90° starting position and 180° finishing position for the output link. Find the values of x , y , θ and ϕ corresponding to the three precision points.	07
Q.3	(a)	Define the following terms as applied to cam with a neat sketch: - Base circle, Pressure angle, and Pitch circle.	03
	(b) (c)	Classify "followers" and explain with neat sketch. Draw the profile of a cam rotating in anti-clock wise direction and operating a knife edge follower when the axis of the follower passes through the axis of the cam shaft from following data: 1. Follower moves outwards through 30 mm during 90° of cam rotation. 2. Follower dwells for next 120° 3. Follower returns to its original position during next 150°, 4. The displacement of the follower is to take place with SHM during	04 07
		outward stroke and with uniform velocity during inward stroke. 5. The least radius of the cam is 50 mm	
Q.3	(a)	OR Compare chain drive with rope drive.	03
Ų.S	(a) (b)		03 04
	(c)		07

Q.4	(a)	Distinguish between the function of a clutch, brake and dynamometer.	03
	(b)	Derive an expression for the efficiency of an inclined plane when a body moves up a plane.	04
	(c)	A simple band brake is applied to a rotating drum of 500 mm diameter. The angle of lap of the band on the drum is 260°. One end of the band is attached to a fulcrum pin of the lever and other end is to a pin 100 mm from the fulcrum. If coefficient of friction is 0.25, and a braking force of 100 N is applied at a distance of 750 mm from the fulcrum, determine the braking torque when the drum rotates in anti-clock wise direction.	07
		OR	
Q.4	(a) (b)	What do you mean by interference in gear? For gear, Define: (1) Contact Ratio (2) Module (3) Circular pitch (4) Addendum.	03 04
	(c)	Derive an expression for the length of the path of contact in a pair of meshed spur gears.	07
Q.5	(a)	Explain briefly the differences between simple, compound, and epicyclic gear trains.	03
	(b)	Explain compound gear train with neat sketch.	04
	(c)	Explain epicyclic gear train with the help of neat sketch. Write its merits and demerits as compared to reverted and compound gear trains. OR	07
Q.5	(a)	Discuss coriolis component of acceleration.	03
Q.S	(b)	Formulate freudenstein's equation.	03
	(c)	State and prove the law of gearing. Show that involute profile satisfies the conditions for correct gearing.	07
