L. E. COLLEGE - MORBI DEPARTMENT OF MECHANICAL ENGINEERING

B.E. - SEMESTER – III

ENGINEERING THERMODYNAMICS (3131905) LAB MANUAL

INDEX

Sr. No.	Title of Experiments	Page No.	Date	Sign
1	To study 1st Law of thermodynamics			
2	To study 2 nd Law of thermodynamics			
3	To understand applications of SFEE			
4	To understand application of Entropy principle			
5	To Compare Otto. Diesel And Dual Cycle			
6	To Study Variables Affecting Performance Of Rankine Cycle			
7	To Understand Different Components Of VCR System And Determine It's COP			
8	To Understand The Effect Of Various Operating Parameters On Performance Of VCR Cycle			
9	To Study Construction And Working Of Oxygen Bomb Calorimeter			
10	To Study Construction And Working Of Junker's Gas Calorimeter			

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Study 1st Law of Thermodynamics

- Discuss microscopic and macroscopic point of view in thermodynamics.
- Define following terms with diagram (wherever necessary).
 - a. Thermodynamic Equilibrium
 - b. Point function and path function
 - c. Intensive and extensive property
 - d. Displacement work and flow work
- Explain quasi static process with necessary diagrams.
- 1st Law of thermodynamics for closed system undergoing a cycle & change of state.
- Internal Energy concept for a system.

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Study 2nd Law Of Thermodynamics

- Limitations of 1st law of thermodynamics.
- Define below terms:
 - a. Thermal reservoir, b. Heat source and Heat sink
 - c. Heat engine
- d. Refrigerator
- e. Heat Pump
- f. PMM-2
- g. Reversible and irreversible process
- Kelvin-Plank and Clausius statements of 2nd law of thermodynamics & their equivalency.
- Carnot cycle & Carnot heat engine.
- Reversed heat engine Or Carnot heat pump
- Reasons for impracticability of Carnot cycle.
- Carnot Theorem & its Corollary.
- Thermodynamics temperature scale.

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Understand Applications of SFEE

- Write steady flow energy equation for the following engineering devices and reduce the same by making suitable assumptions.
- Discuss the SFEE for the following:
 - a. Nozzle/Diffuser
 - c. Steam or Gas Turbine
 - e. Reciprocating Compressor
 - g. Centrifugal Water Pump

- b. Heat Exchangers
- d. Hydraulic Turbine
- f. Rotary Compressor
- h. Throttling Device.

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Understand Application of Entropy Principle

- What is the meaning of word entropy? Prove that entropy is the point function (Property) of the system.
- State Clausius theorem. Explain Clausius inequality for reversible and irreversible cyclic processes.
- With usual notations prove that $dS \ge \delta Q/T$.
- State principle of increase of entropy. Prove that $dS \ge 0$ OR Show that entropy of isolated system or universe is always increases.

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Compare Otto, Diesel and Dual Cycle

- Otto cycle
 - o Processes
 - o P-v and T-s diagrams
- Diesel cycle
 - Processes
 - o P-v and T-s diagrams
- Dual cycle
 - o Processes
 - o P-v and T-s diagrams
- Comparison
 - o Based on efficiency versus compression ratio
 - o Comparison for same compression ratio and same heat input
 - o For constant maximum pressure and heat supply
 - For same maximum pressure and temperature

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Study Variables Affecting Performance of Rankine Cycle

- Name of components of Rankine cycle and their functions
- Processes of Rankine cycle
- Schematic diagram of cycle
- P-v and T-s diagram
- Effect of variables
- Superheating of steam
- Increasing boiler pressure
- Decreasing condenser pressure

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Understand Different Components of VCRS & Determine C.O.P.

- Define refrigerant and refrigerant effect
- Schematic diagram of VCRS
- List of components of VCRS and their functions
- Processes of VCR cycle
- P-h diagram
- Derivation of COP

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Understand the Effect of Various Operating Parameters on Performance of VCR Cycle

- Effect of superheat in suction vapour.
- Effect of change in suction pressure.
- Effect of change in discharge pressure.
- Effect of liquid sub cooling.

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Study Construction and Working of Oxygen Bomb Calorimeter

- Definition of fuel and calorific value of fuel
- Introduction and principle of oxygen bomb calorimeter
- Main components
- Schematic diagram
- Working of oxygen bomb calorimeter
- Calculation procedure
- Application of oxygen bomb calorimeter

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society

Aim: To Study Construction and Working of Junker's Gas Calorimeter

- Introduction and principle of Junker's gas calorimeter
- Main components
- Schematic diagram
- Working of Junker's gas calorimeter
- Calculation procedure
- Application of Junker's gas calorimeter

Vision of the Department: To deliver quality engineering education for Mechanical Engineers with Professional competency, Human values and Acceptability in the society.

- To nurture engineers with basic and advance mechanical engineering concepts
- To impart Techno-Managerial skill in students to meet global engineering challenges
- To create ethical engineers who can contribute for sustainable development of society