GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME:All Branches SUBJECT NAME:Mathematics 02 SUBJECT CODE: 3110015 1st Year (Semester 2)

Type of course: Basic Science Course

Prerequisite: Calculus, fourier series

Rationale: To compute line and surface integrals, solution techniques of higher order ordinary differential equations, fourier integral representation.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	IVIALKS
3	2	0	5	70	30	0	0	100

Sr. No.	Content	Total Hrs	% Weightage
01	Vector Calculus: Parametrization of curves, Arc length of curve in space, Line Integrals, Vector fields and applications as Work, Circulation and Flux, Path independence, potential function, piecewise smooth, connected domain, simply connected domain, fundamental theorem of line integrals, Conservative fields, component test for conservative fields, exact differential forms, Div, Curl, Green's theorem in the plane (without proof), Parametrization of surfaces, surface integrals, Stoke's theorem (without proof), Divergence Theorem (without proof).	14	33 %
02	Laplace Transform and inverse Laplace transform, Linearity, First Shifting Theorem (s-Shifting), Transforms of Derivatives and Integrals, ODEs, Unit Step Function (Heaviside Function), Second Shifting Theorem (t-Shifting), Laplace transform of periodic functions, Short Impulses, Dirac's Delta Function, Convolution, Integral Equations, Differentiation and Integration of Transforms, ODEs with Variable Coefficients, Systems of ODEs.	07	22 %
03	Fourier Integral, Fourier Cosine Integral and Fourier Sine Integral.	02	
04	First order ordinary differential equations, Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.	05	12 %
05	Ordinary differential equations of higher orders, Homogeneous Linear ODEs of Higher Order, Homogeneous Linear ODEs with Constant Coefficients, Euler–Cauchy Equations, Existence and Uniqueness of Solutions, Linear Dependence and Independence of Solutions, Wronskian, Nonhomogeneous ODEs, Method of Undetermined Coefficients, Solution by Variation of Parameters.	08	20 %
06	Series Solutions of ODEs, Special Functions, Power Series Method, Legendre's Equation, Legendre Polynomials, Frobenius Method, Bessel's Equation, Bessel functions of the first kind and their properties.	06	13%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
7	14	14	14	14	7			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

Reference Books:

- (1) Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley and Sons.
- (2) Peter O'Neill, Advanced Engineering Mathematics, 7th Edition, Cengage.
- (3) Dennis G. Zill, 4th edition, Advanced Engineering Mathematics, 4th Edition, Jones and Bartlett Publishers.
- (4) Maurice D. Weir, Joel Hass, Thomas' Calculus, Early Transcendentals, 13e, Pearson, 2014.
- (5) Howard Anton, Irl Bivens, Stephens Davis, Calculus, 10e, Wiley, 2016.

Course Outcome:

After learning the course the students should be able to:

- 1. parametrized the given curve
- 2. compute line integral
- 3. compute Work, Circulation and Flux by line integral
- 4. use fundamental theorem of line integrals
- 5. use Div, Curl
- 6. use Green's theorem in the plane
- 7. parametrized surfaces
- 8. compute surface integrals
- 9. use Stoke's theorem
- 10. use Divergence theorem
- 11. use formula of Laplace transform
- 12. use Unit step function, short impulses, Dirac's Delta function
- 13. use Laplace transform to solve ODE
- 14. express in fourier integral representation
- 15. express in fourier cosine integral and fourier sine integral
- 16. solve exact differential equation
- 17. solve first order linear differential equation
- 18. solve bernoulli's equation
- 19. solve some of first order and higher degree equations
- 20. solve homogeneous linear ODEs of higher order
- 21. solve Euler Cauchy equation
- 22. check linear dependence and independence of solutions
- 23. evaluate wronskian
- 24. use method of undetermined coefficients
- 25. use method of solution by variation of parameters

- 26. solve ODE by power series method27. solve legendre's equation28. use legendre polynomials

- 29. use frobenius method
- 30. solve Bessel's equation
- 31. use bessel functions of the first kind and its properties

List of Open Source Software/learning website:

Scilab, MIT Opencourseware.