GENERAL DEPARTMENT SEM-2 SUBJECT: MTHEMATICS-2 (3110015)

Tutorial-1 Vector Calculus

- **Ex-1** If $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ then show that $\operatorname{div}(\mathbf{r}^n \mathbf{r}) = (n+3)\mathbf{r}^n$.
- **Ex-2** Find the constant a if $\vec{A} = (x + 3y^2)\hat{i} + (2y + 2z^2)\hat{j} + (x^2 + az)\hat{k}$ is solenoidal.
- **Ex-3** If $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ then show that (a) $d\mathbf{i}v\mathbf{r} = 3$, (b) $curl\mathbf{r} = 0$.
- **Ex-4** Show that $\vec{F} = (3x^2y)\hat{i} + (x^3 2yz^2)\hat{j} + (z^2 2y^2z)\hat{k}$ is irrotational but not solenoidal.
- **Ex -5** Evaluate the line integral of $f(x,y,z) = x^2 y^2 + 3xyz yz$ over the straight line segment from A(0,0,0) to B(1,2,3).
- **Ex-6** Using Green's theorem, evaluate $\oint_C (\sin y \, dx + \cos x \, dy)$, where C is the boundary of the triangle with vertices $(0,0), (\pi,0), (\pi,1)$.
- **Ex-7** Verify Green's theorem for the field $\overrightarrow{f(x, y)} = (x-y)\hat{i} + x\hat{j}$ and the region R bounded by the unit circle C : $\overrightarrow{r(t)} = (\cos t)\hat{i} + (\sin t)\hat{j}, 0 \le t \le 2\pi$.
- **Ex-8** Verify Green's theorem for vector function $\vec{F} = (y^2 7y)\hat{i} + (2xy + 2x)\hat{j}$ and curve $C: x^2 + y^2 = 1.$

GENERAL DEPARTMENT SEM-2 SUBJECT: MTHEMATICS-2 (3110015)

Tutorial-2 Laplace Transform

Find L[3shinh $4t + 5 \sin 7t$] Ex-1 Find $L \cos^3 2t$ Ex-2 Find L{[f(t)]}, if f(t) = $\begin{cases} t, & 0 < t < 4 \\ 5, & t > 4 \end{cases}$ Ex-3 Ex-4 Find $Le^{2t} \cos t$ Find $L[\sinh 2t \sin 3t]$ Ex-5 Find $L[t^2 \sin \pi t]$ Ex-6 Find $L[te^{2t} \sin 3t]$ Ex-7 Ex-8 Find L $\left| \frac{e^{-bt} - e^{-at}}{t} \right| (a \neq b)$ Ex-9 Find $L\left[\frac{1-e^{t}}{t}\right]$ Ex-10 Find $L \sqrt{e^{3(t+1)}}$ Ex-11 Find $L^{-1} \left| \frac{6s-7}{s^2+5} \right|$ Ex-12 Find inverse Laplace of $\frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6}$ Ex-13 Find inverse Laplace of $\frac{5s+3}{(s-1)(s^2+2s+5)}$ Ex-14 Find inverse Laplace of $\frac{2s^2 - 1}{(s^2 + 1)(s^2 + 4)}$ Ex-15 Find t*sin t Ex-16 Find $L^{-1} \left| \frac{1}{(s^2 + a^2)^2} \right|$ by using convolution theorem. Ex-17 Find $L^{-1}\left\{\log\left(\frac{s+a}{s-b}\right)\right\}$ Ex-18 Solve the equation by using Laplace transform $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t} \sin t$; x(0)=0, x'(0) = 1 Ex-19 Solve the equation by using Laplace transform $y''+3y'+2y = e^t$, y(0) = 1, y'(0) = 0Ex-20 Find the inverse Laplace transform of (a) $\frac{e^{-2s}}{s+1}$, (b) $\frac{1+e^{-s}}{s^2+4}$

s+1, s^2 .

GENERAL DEPARTMENT SEM-2 SUBJECT: MTHEMATICS-2 (3110015)

Tutorial-3 Fourier Integral

- 1. Express the function $f(x) = \begin{cases} 1 & \text{for } |x| \le 1 \text{ and } for \ |x| > 1 \text{, as a Fourier integral.} \end{cases}$ Hence evaluate $\int_0^\infty \frac{\sin\rho \ \cos\rho x}{\rho} \ d\rho$
- 2. Using Fourier Sine integral, show that $\int_0^\infty \frac{1 \cos \pi \rho}{\rho} \sin x \rho \, d\rho = \begin{cases} \frac{1}{2}\pi, & 0 < x < \pi \\ o, & x > \pi \end{cases}$
- 3. Find the Fourier integral representation of the function
 - $f(x) = \begin{cases} 2 & ; |x| < 2\\ 0 & ; |x| > 2 \end{cases}$
- 4. Find Fourier cosine integral of $f(x) = e^{-ax}$; x>0, a>0. Hence prove that

$$\int_{0}^{\infty} \frac{\cos\lambda x}{a^2 + \lambda^2} d\lambda = \frac{\pi e^{-ax}}{2a}$$

GENERAL DEPARTMENT SEM-2 SUBJECT: MTHEMATICS-2 (3110015)

Tutorial-4 FIRST ORDER ORDINARY DIFFERENTIAL EQUATION

1. Solve
$$(e^x + 1)ydy = (y+1)e^xdx$$

- 2. Solve $3e^x \cos^2 ydx + (1-e^x) \cot ydy = 0$
- 3. Solve $(x + \sin y)dx + (x \cos y 2y)dy = 0$
- 4. Solve $(xy 2y^2)dx = (x^2 3xy)dy$
- 5. Solve $(x^2y^2 + 2)ydx + (2 x^2y^2)xdy = 0$
- 6. Solve $\frac{dy}{dx} + y = -\frac{x}{y}$
- 7. Solve $(y^3 2x^2y)dx + (2xy^2 x^3)dy = 0$
- 8. Solve $y' (1 + 3x^{-1})y = x + 2$, y(1) = e 1
- 9. Solve $(1 + y^2)dx = (\tan^{-1} y x)dy$
- 10. Solve $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x^2}$
- 11. Solve $(y \sin 2x) dx (1 + y^2 + \cos^2 x) dy = 0$
- 12. Solve $\left(y + \frac{y^3}{3} + \frac{1}{2}x^2\right) dx + \frac{1}{4}\left(x + xy^2\right) dy = 0$
- 13. Solve $y' \tan y = \sin(x + y) + \sin(x y)$
- 14. Solve $(x^2 y^2)dx + 2xydy = 0$

GENERAL DEPARTMENT SEM-2 SUBJECT: MTHEMATICS-2 (3110015)

Tutorial-5 Higher Order Differential Equations

- Ex-1 Solve y''-4y'+4y=0.
- Ex-2 Solve y''+y=0.
- Ex-3 Solve y''-3y'+2y = 0.
- Ex-4 Solve y''-2y'+2y = 0.
- Ex-5 Solve $(D^4 + 2D^2 + 1)y = 0$.
- Ex-6 Solve $\frac{d^3y}{dx^3} + y = 0$.
- Ex-7 Solve y'' + y' 2y = 0, y(0) = 4 & y'(0) = -5.
- Ex-8 Solve $(D^2 7D + 10)y = 5x + 7$.
- Ex-9 Solve $(D^2 4D + 4)y = x^3e^{2x}$.
- Ex-10 Solve $(D^2 2D + 1)y = e^x$
- Ex-11 Solve $(D^2 3D + 2)y = \cosh x$.
- Ex-12 Solve $(D^2 5D + 6)y = \sin 3x$
- Ex-13 Using the method of variation of parameters solve the following differential equations: 1. $y'' + 4y = \sec 2x$ 2. $y'' + y = x \sin x$
- Ex-14 Find the second linearly independent solution of y'' + 6y' + 9y = 0Given that $y_1(x) = e^{-3x}$ is one solution.
- Ex-15 Using the method of undetermined coefficients solve $y'' + y' 12y = e^{3x}$
- Ex-16 Solve $x^2D^2y 3xDy + 5y = x^2sinlogx$
- Ex-17 Solve $(x^2D^2 + xD 1)y = 0$
- Ex-18 Solve $(x^3D^3 + 6x^2D^2 12)y = 12/x^2$

Tutorial-6 Series solution of ODE

- 1. Find the power series solution of the equation $\frac{d^2y}{dx^2} + y = 0$ about $x_0 = 0$
- 2. Find the series solution of y'' = 2y' in power of x.
- 3. Find the power series solution of $(x^2+1)y''+xy'-xy=0$ about x=0
- 4. Using Frobenius method, solve differential equation $4x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$.
- 5. Find the series solution of the equation xy'' + y' y = 0 about $x_0 = 0$
- 6. Find a series solution of the differential equation $x^2y''+x^3y'+(x^2-2)y=0$ about x=0
- 7. Prove that (a) $\int_{-1}^{1} Pn(x) dx = 2$ if n = 0(b) $\int_{-1}^{1} Pn(x) dx = 0$ if $n \ge 1$
- 8. Show that $\int_{-1}^{1} Pn(x)Pm(x)dx = 0$, $m \neq n$

 $=\frac{2}{2n+1}$, m = n.(Orthogonality of Legendre's

polynomials) Also using it obyaine the value of $\int_{-1}^{1} P_n^2(x) dx$.

- 9. Prove that $J_{-n}(x) = (-1)^n J_n(x)$.
- 10.Determine the values of (1) $J_{\frac{3}{2}}(x)$ (2) $J_0(x) \& J_1(x)$
- 11.Show that $J_1(x) = J_0(x) x^{-1}J_1(x)$.
- 12.Prove that $\frac{d}{dx}[x^{n+1}J_{n+1}(x)] = x^{n+1}J_n(x).$