GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME:All Branches SUBJECT NAME:Mathematics 01 SUBJECT CODE: 3110014 1st Year (Semester 1)

Type of course: Basic Science Course

Prerequisite: Algebra, Trigonometry, Geometry

Rationale: The study of rate of changes, understanding to compute area, volume and express the function in terms of series, to apply matrix algebra.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	C	Theor	y Marks	Practical Marks		Morka
			C	ESE (E)	PA (M)	ESE (V)	PA (I)	IVIALKS
3	2	0	5	70	30	0	0	100

Content:

Sr. No.	Content	Total Hrs	% Weightage
	Indeterminate Forms and L'Hôspital's Rule.	01	
01	Improper Integrals, Convergence and divergence of the integrals, Beta and Gamma functions and their properties.		15 %
	Applications of definite integral, Volume using cross-sections, Length of plane curves, Areas of Surfaces of Revolution	03	
02	Convergence and divergence of sequences, The Sandwich Theorem for Sequences, The Continuous Function Theorem for Sequences, Bounded Monotonic Sequences, Convergence and divergence of an infinite series, geometric series, telescoping series, \Box^{\Box} term test for divergent series, Combining series, Harmonic Series, Integral test, The p - series, The Comparison test, The Limit Comparison test, Ratio test, Raabe's Test, Root test, Alternating series test, Absolute and Conditional convergence, Power series, Radius of convergence of a power series, Taylor and Maclaurin series.	08	20 %
03	Fourier Series of $2\square$ periodic functions, Dirichlet's conditions for representation by a Fourier series, Orthogonality of the trigonometric system, Fourier Series of a function of period $2\square$, Fourier Series of even and odd functions, Half range expansions.	04	10 %
04	Functions of several variables, Limits and continuity, Test for non existence of a limit, Partial differentiation, Mixed derivative theorem, differentiability, Chain rule, Implicit differentiation, Gradient, Directional derivative, tangent plane and normal line, total differentiation, Local extreme values, Method of Lagrange Multipliers.	08	20 %
05	Multiple integral, Double integral over Rectangles and general regions, double integrals as volumes, Change of order of integration, double integration in polar coordinates, Area by double integration, Triple integrals in rectangular, cylindrical and spherical coordinates, Jacobian, multiple integral by substitution.	08	20 %
06	Elementary row operations in Matrix, Row echelon and Reduced row echelon forms, Rank by echelon forms, Inverse by Gauss-Jordan method,	07	15%

Solution of system of linear equations by Gauss elimination and Gauss-	
Jordan methods. Eigen values and eigen vectors, Cayley-Hamilton	
theorem, Diagonalization of a matrix.	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
7	14	14	14	14	7		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- (1) Maurice D. Weir, Joel Hass, Thomas' Calculus, Early Transcendentals, 13e, Pearson, 2014.
- (2) Howard Anton, Irl Bivens, Stephens Davis, Calculus, 10e, Wiley, 2016.
- (3) James Stewart, Calculus: Early Transcendentals with Course Mate, 7e, Cengage, 2012.
- (4) Elementary Linear Algebra, Applications version, Anton and Rorres, Wiley India Edition.
- (5) Calculus, Volumes 1 & 2, T. M. Apostol, Wiley Eastern.

Course Outcome:

After learning the course the students should be able to:

- 1. identify indeterminate forms and can evaluate
- 2. determine the convergence/divergence of improper integral
- 3. use beta and gamma functions
- 4. evaluate volume by cross section
- 5. compute length of curve
- 6. evaluate the area of surfaces of revolution
- 7. determine the convergence or divergence of sequences
- 8. use the sandwich theorem for sequences
- 9. evaluate the value of geometric series
- 10. determine the nature of telescoping series
- 11. use integral test
- 12. apply the p series for comparison test or Limit comparison test,
- 13. apply various tests for convergence or divergence of an infinite series
- 14. find the radius of convergence of a power series
- 15. find the Taylor series, Maclaurin series.
- 16. express the function in fourier series who satisfied Dirichlet's conditions
- 17. express the function in half range expansion
- 18. evaluate the limits of functions of two variable
- 19. understand the continuity of functions of two variables
- 20. apply the test for non existence of limit
- 21. find partial derivative
- 22. use chain rule
- 23. determine gradients and directional derivative

- 24. implicit and total differentiation
- 25. find local extreme values
- 26. use Lagrange's multipliers method to find extreme values
- 27. evaluate double integrals as area as well as volume
- 28. apply change of order of integration to simplify integral
- 29. compute double integration in polar coordinates
- 30. compute triple integrals in rectangular, cylindrical and spherical Coordinates
- 31. determine the Jacobian for substitution in multiple integral
- 32. use elementary row operations to get Row echelon form
- 33. use elementary row operations to get Reduced row echelon forms
- 34. find rank by echelon forms
- 35. compute inverse by Gauss-Jordan method
- 36. solve the system of linear equations by Gauss elimination
- 37. solve the system of linear equations by Gauss-Jordan methods.
- 38. find eigen values of matrices
- 39. find eigen vectors of matrices
- 40. use Cayley-Hamilton theorem to find inverse of a matrix
- 41. use Cayley-Hamilton theorem to find higher powers of a matrix
- 42. understand the diagonalization of a matrix.

List of Open Source Software/learning website:

Scilab, MIT Opencourseware.