Tutorial - 1(D) Applications of Definite Integral

- Volume by slicing method :

1. Find the volume of a solid ball of radius a using slicing method.
2. Find the volume of a cone with height $4 c . m$. using by slicing method.
3. Using slicing method, find the volume of solid obtaining by rotating about the x -axis the region under the curve $y=\sqrt{2 x}$ from 0 to 1 .

- Volume by Rotation :

4. The Region between the cure $y=\sqrt{x}, \quad 0 \leq x \leq 4$ and x-axis is revolved about the x axis to generate a solid. Find its volume.
5. Find the volume generated by revolving the area bounded bu the parabola $y^{2}=8 x$ and its latus rectum about y-axis.
6. Find the volume generated by revolving the area bounded by $2 x=x^{2}, x=4, y=0$ about x-axis.
7. Find the volume of solid generated by revolving the cordial $\pi=a(1+\cos \theta)$ about the initial line.
8. Find the volume generated by revolving the arc bounded by the parabola $y^{2}=4 a x$, $a>0$ and latus rectum about latus rectum.

- Volume by Cylindrical Shells.

9. Find the volume generated by revolving the area bounded by $2 y=x^{2}, x=4, y=0$ about y-axis
10. Find the volume of solid generated by rotating about y-axis and the region bounded by the curve $y=x$ and $y=x^{2}$.
11. Using cylindrical shells, find the volume of the solid obtained by rotating about the x axis the region under the curve $y=\sqrt{x}$ from o to 1 .
12. Find the volume of the solid obtaining about the line $y=-1$ the region bounded by the curves $y=x^{2}$ and $x=y^{2}$.
