

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3161910 Semester – 6

Subject Name: Applied Thermodynamics

Type of course: Professional Core

Prerequisite: -

Rationale: A Mechanical Engineer must have good understanding of energy conversion in various thermal devices and must understand phenomena occurring in high speed compressible flow.

Teaching and Examination Scheme:

_	1 cuching that Extended Schools								
	Tea	Teaching Scheme Credits			Examination Marks				Total
	L	T	P	C	Theory Marks		Practical Marks		Marks
					ESE (E)	PA (M)	ESE (V)	PA (I)	
	4	0	2	5	70	30	30	20	150

Content:

Sr.	Sr. Content			
No.		Hrs		
1	Properties of gases and gas mixtures: Avogadro's law, equation of state, Vander Waal's	4		
	equation, reduced properties, law of corresponding states, compressibility chart, internal			
	energy; enthalpy and specific heat of a gas mixtures			
2	Psychrometry: Dalton's law of partial pressure, Properties of moist air, temperature and	8		
	humidity measuring instruments, psychrometric chart, psychrometric processes such as sensible			
	heating and cooling, heating and humidification cooling and dehumidification, chemical			
	dehumidification, adiabatic saturation			
3	Refrigerant and Refrigeration cycles: Classification, nomenclature and desirable properties	8		
	of refrigerant, secondary refrigerants, ODP and GWP, Compound compression with			
	intercooler, flash gas removal and flash intercooler, Desirable characteristics of refrigerant			
	absorbent pair for vapor absorption cycle, Simple H ₂ O -NH ₃ cycle, LiBr ₂ – H ₂ O cycle and its			
	working			
4	Fuel Air and Actual Cycles: Assumptions for fuel—air cycles, reasons for variation of specific	8		
	heats of gases, change of internal energy and enthalpy during a process with variable specific			
	heats, isentropic expansion with variable specific heats, effect of variable specific heats on Otto,			
	Diesel and Dual cycle, dissociation, comparison of air standard and fuel air cycles, effect of			
	operating variables, comparison of air standard and actual cycles, effect of time loss, heat loss			
	and exhaust loss in petrol and diesel engines,			
5	IC engine performance and Emissions: Measurement of indicated power, brake power,	10		
	friction power, fuel consumption and emission, calculation of brake thermal efficiency, brake			
	power and brake specific fuel consumption, variable compression ratio engines, heat balance			
	sheet, principal engine emissions, source of engine emissions, emission measurement			
	instruments like five gas analyzer and smoke meter, Euro and Bharat standards of emissions of			

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3161910

540,000 5040, 5102, 10						
	I.C. Engines, Emission control methods like Air injection, Exhaust gas recirculation, Catalytic					
	converter, Evaporative emissions control					
6	6 Fundamentals of compressible flow: Ideal gas relationship, Adiabatic energy equation, Mach					
	number and its significance, Mach waves, Mach cone and Mach angle, static and stagnation					
	states, relationship between stagnation temperature, pressure, density and enthalpy in terms of					
	Mach number, stagnation velocity of sound, reference speeds, various regions of flow, Effect					
	of Mach number on compressibility, Area velocity relationship.					
7	7 Reciprocating Compressors: Construction and working, Multistage conditions for minimum					
	work, Intercooling, Efficiency and control of air compressors					
	Centrifugal Compressors: Essential parts, Static and total head properties, Velocity diagram,					
	Degree of reaction, surging and choking, Losses in centrifugal compressor					
	Axial Flow Compressors: Construction of an axial flow compressor, Aerofoil blading, Lift					
	and drag, Performance characteristics					

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
20	30	50	0	0	0	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Engineering Thermodynamics by P.K. Nag, McGraw-Hill Education
- 2. Refrigeration and Air Conditioning by C P Arora, McGraw-Hill India Publishing Ltd.
- 3. Internal Combustion Engines by Ganeshan, McGraw-Hill Education
- 4. Turbines, Compressors and Fans by S.M. Yahya., TMH Publishers
- 5. Fundamentals of Internal Combustion engine by H.N.Gupta, PHI Learning
- 6. Internal Combustion Engine Fundamentals by John B. Heywood, McGraw Hill Education Pvt Ltd.

Course Outcomes:

Sr.	CO statement	Marks %	
No.		weightage	
CO-1	To apply various gas laws of real gas and their mixture, to make use of psychrometric		
	properties to identify basic psychrometric processes.		
CO-2	To experiment with vapor compression and vapor absorption systems.	14	
CO-3	To explain fuel-air and actual cycles for IC engines and to develop understanding of	32	
	IC engines testing and their emission norms.		
CO-4	To apply fundamental of compressible fluid flow.	14	
CO-5	To demonstrate various air compressors and experiment with them.	18	

Page 2 of 3

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3161910

List of Experiments:

- 1. To understand different components of VCR system and to determine its COP.
- 2. To perform different psychrometric processes and analyze the same using psychrometric chart.
- 3. To understand construction and working of window air-conditioner/split air-conditioner and to determine its capacity.
- 4. To determine COP and apparatus dew point of an air conditioning test rig.
- 5. To determine (COP)_C and (COP)_H of heat pump.
- 6. To determine saturation efficiency of air cooler/air washer.
- 7. Performance test of 4 stroke Petrol Engine.
- 8. Performance test of 4 stroke Diesel Engine.
- 9. Determination of friction power of multi cylinder petrol engine using Morse Test Method.
- 10. Performance test on Reciprocating compressor.
- 11. To study the constructional details of axial flow compressor and draw its characteristics curve.
- 12. Performance test on Centrifugal compressor.

Major Equipment: VCR cycle test rig, Mechanical heat pump, psychrometric processes apparatus, window/split air conditioners, air conditioning test rig, air cooler/air washer, 4 stroke petrol engine, 4 stroke diesel engine, Morse test apparatus, reciprocating compressor test rig, axial flow compressor test rig, centrifugal compressor test rig

List of Open Source Software/learning website: https://nptel.ac.in/course.php