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Today we will be having, continuing with the what we were doing last time and that I was 
essentially saying different kinds of line drawing algorithms.

(Refer Slide Time: 00:01:18 min)

Yesterday, I had introduced this Bresenhem’s algorithm and we had said that if we have to draw a
line between a point one and a point two, in this exact straight line between the two can be
referred to as a true line. But in a Raster refresh display, the true line will never be displayed.
What would be displayed would be a set of pixels which in this particular case might be pixels
chosen something like this and so on. So, this set of pixels that are displayed will refer to these as
a displayed line and this Bresenhem’s line drawing algorithm works on minimizing the error
between the true line and the displayed line and the error between the two is defined as the gap
between the two. So if this particular pixel is being displayed, this pixel is actually let’s say the
center of the central here. Ok. And the line at the corner is supposed to pass through this point, so
error is this error e. So we will go through this algorithm. The basic principle is that you have to
minimize the error between the true line and the displayed line.
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If we have a set of pixels like this, this is the true line. One pixel that has been displayed is this
pixel that I have shown here in dark. You have already seen the previous line drawing algorithm,
we display pixels let’s say in a loop. The first pixel is this one, let’s say the second pixel that is
displayed is this pixel. So this is the first pixel, this is the second pixel to be displayed. We will
number them. Ok.  So if initially pixel number one is displayed and then the pixel number two is
displayed, we will just see how the error would be defined in the two cases. If we look at this
point, this pixel will actually correspond to the pixel something like this. The center of this pixel
here will be at this level. So the gap between the two let’s say this term, this much which is the
error initially. At this point, the center for this pixel is that this level and the actual line is through
this point. So the error here is this error e. So, initially this is the error. Finally this is the error.

So,  what  we say is  as  we move from this  pixel  to  this  pixel,  the error  is  changing by this
magnitude  to  this  magnitude.  And how much will  be  the  difference  in  the  two errors? The
difference between these two errors will be equal to the slope of the line because the line has
moved up by this much. Initially line is here then the line is here, so the line has moved up by
this amount and this amount would be equal to the slope of the line. Slope of the line multiplied
by unit pixel distance. Is that okay? So, we will say that as we move from one pixel to the second

pixel, the error term e would change by an amount equal to 
dy
dx

. Yeah what’s that? Would we

defined a pixel to be square or something?

I have we had covered it earlier. If this is the array of pixels, if you are addressing this particular
pixel, it’s actually this pixel, you are addressing it at this location. So if let’s say for sake of
argument I treat this as my 0 0, I have already said normally we treat the top left as 0 0. Now this
is my origin, when I refer to a pixel 0 0, I am actually referring to this pixel. I am referring to
pixel 1 1, I am referring to pixel which is this one. So we are actually referring to a pixel as the
square entity and we are addressing it by the corner. And the center is the center of this point. and
the center is the center of this point. And when you write point two, point, this point two? Yeah.
Yes sir, where does it lie on the square?
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Where does it lie on the square? Yes sir. This is the corner of the pixel. This will be in the next
square. This actually would be a pixel like this. So the center is the center of the square. Yeah,
actually the pixel is at the center but we are looking at the line at the beginning of that pixel, the
position of the line at the beginning of that pixel. So, as we move from one pixel to the second

pixel in this orientation, the error term would change by an amount equal to
dy
dx

. Is that okay?

But in another way in which the pixels can be displayed, I have right now assumed that this was
the first pixel and second pixel was this one, there is no reason for that to be true. The second
pixel can actually be this pixel. You just see what happens in that case.

(Refer Slide Time: 00:08:20 min)

The first pixel that is displayed is the pixel number one, which is like this and the next pixel that
we decide to display is this pixel number four which is. Ok. At this point my error term will be
this much, at this point my error term would be this much. And by how much has my error term
changed as I have moved one pixel in x the direction and say e will be equal to e plus, my line

has moved up by an amount equal to, this amount is  
dy
dx

. So this line has moved up by an

amount equal to  
dy
dx

and if you look at this pixel, earlier to this pixel now the pixel being

displayed is this one.

So the pixel to be displayed has also moved up by an amount of one unit. So the error term

because of the line moving up would increase by an amount of 
dy
dx

and since the pixel being

displayed has also shifted up, the error term will come down by one. Is that okay? So if the next
pixel to  be displayed is  a diagonal pixel  like this,  then the error  term would change in  this
manner. Is that all right? Now, right now we have not considered the case when the first pixel to
be displayed is this one and the second pixel to be displayed is pixel number three, that can also
happen. We are not taking that into account because what you will say right now is at this line
has got a greater inclination towards the x axis. So this line has a maximum movement in x



direction or the direction of maximum motion is the x direction or the slope of this line is less
than 45 degrees.
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If you consider octants like this, this particular case is for the first octant. And in the first octant 
my direction of maximum motion is the x direction and the error data measuring is in a direction 
perpendicular to that. So, this error term is measured in the y direction. So the line of maximum 
moment in the x direction and error is measured in direction perpendicular to let’s say the line of 
maximum motion or direction of maximum motion. So the error is measured in the direction 
perpendicular to the direction of maximum motion. Ok. Is this all right?

(Refer Slide Time: 00:13:43 min)

So now we have a scenario in which this particular pixel has already been displayed. Okay. The 
error here is this amount e, this is already displayed. Now I have to decide whether next pixel 
should be this one or this one. What should be the criteria for deciding that? One which give the 
lower error. The one which gives the lower error. Okay. If this is displayed, the error will be

e+
dy
dx

. If this is displayed, the error will be e+
dy
dx

−1 and we can compare the magnitude 

of the two errors and find out which is lower.

Alternatively at a previous level whichever pixel was displayed whether this one or this one, I 
could have computed the error at the end of the line. Okay. And if this line is passing below this 
midpoint then, I will display this pixel. If it is passing above the midpoint like let’s say 
somewhere from here then, I will display this point. If this true line is passing above the 
midpoint then this pixel will give a lower error compared to this pixel.

Now I am looking at one step before I am not looking at these two pixels, I am looking at these 
two pixels. If the line is passing exactly through the center how much is the error? Zero.  The 
error is zero. If the line is passing below that then how much is the error? Whatever amount it is 
passing. Positive or negative? Negative. The error will be negative. If the line is above that the 
error is positive. So if my line is above this I will display this pixel, if my line is below this I will



display this pixel or in other words we will say that if e > 0 then we will display the upper pixel. 
So let’s say this is number two and this is number three. If e > 0 then pixel number three and if e 
< 0 then pixel number two.
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So what we will basically do is that we will find out the error at this line. If the error is positive 
we will display this pixel, if the error is negative we will display the lower pixel and depending 
on which pixel is being displayed, the error in the next term will be computed either according to
this or according to this. If, I am considering these two, the previous pixel has to be this one. 
Pixel number one has been displayed, if at the end of that pixel the error is positive then we will 
display the pixel number three. If at the end of that the error is negative I will display pixel 
number two. If pixel number two is being displayed, my error will be computed according to this
formula, this is for pixel number two. If pixel number three is being displayed, I will use this 
formula. So according to this method, we will write down the Bresenhem’s algorithm.

(Refer Slide Time: 00:18:48 min)

Again we are taking the case where this is the screen and we have to a draw line from a point one
to a point two. The point one let’s say is x1 y1 and the point two is let’s say x2 y2. The first point 
that we displayed that will be the pixel x y which will be initialized to x1 y1. So, and this start of 
the algorithm we will compute the error term which initially when we display the pixel x y that is
the starting pixel. The x y is the starting pixel that is being displayed. At the end of this pixel how

much is the error term? The line has moved up by an amount of 
dy
dx

and the center of this pixel

is at 0.5. So at this location the error will be e=
dy
dx

−0.5 . This amount of the error that I have 

shown in this part of the figure is  
dy
dx

−0.5 . Is that okay? So the initial error that will be there 

at the end of the first pixel will be 
dy
dx

−0.5 . So when I have to decide, I will draw the figure 

clearly here.
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This is the initial error at the end of this pixel. So at this level, at this position I have to decide, 
whether this is my pixel number one, whether the pixel number two is to be displayed or the 
pixel number three is to be displayed. In order to decide that I will look at whether this e is 
positive or negative. If this e is positive, I will display this, if e is negative, I will display this. So 
accordingly we will write the algorithm.

(Refer Slide Time: 00:22:07 min)



We initialize e that is the error term to be 
dy
dx

−0.5 and then we have a loop. Okay. So, we 

have initialized the error term to be 
Δy
Δx

−0.5 and this as I said would be the
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error term or would be the error at the end of the first pixel that is at this location. Then we are 
going, repeating this part in a loop, we will first plot the first pixel, we will plot the pixel x y.

(Refer Slide Time: 00:23:58 min)

Then we will say if e > 0. If e > 0 then the next pixel to be displayed is the pixel number three. If 
pixel number one is x y, pixel number three is x + 1, y + 1 and pixel number two would be x + 1 
and y. So we have plotted the first pixel x y, if e >0 then you are saying y is equal to y + 1 and     
e =e - 1 that means we are changing the value of y to y + 1 and the error term e, you are saying    
e= e - 1 and then immediately out of this if statement we are saying x =x + 1. So, x is also being 

made x + 1 and error term is being changed to e=e+
Δy
Δx

e. We have already said e = e - 1 and 

after that we are saying e=e+
dy
dx

e. So effectively e=e+
dy
dx

−1 . So if my error term is 

greater than 0 then we are changing x to x + 1 and y to y + 1 and e to e+
dy
dx

−1 .

 
So if the error is positive now y is becoming y + 1, x is becoming x + 1 and e is becoming

e+
dy
dx

−1, which is effectively what we want to do if the pixel number three is to be displayed.

If the pixel or if the error term is less than zero in that case if e <0, these two steps will not be 



done, we will just say x is equal to x + 1 and e will be equal to e+
dy
dx

which is what we want 

to do for pixel number two. The x will change to x + 1 and y will remain as y and e will change 

to e+
dy
dx

. So effectively if e <0 then pixel two, if e >0 then pixel three. Okay. And mind you 

all this we are doing when our line is in the first octant, in this part. If we have to draw line from 
x1 y1 to x2 y2, when we say that the line is in the first octant, we are saying y2 > y1, x2 > x1 and x2 - 
x1 > y2 - y1. So this algorithm that you have written right now is for the condition, when these 
conditions are satisfied.
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If our line is in some other quadrant instead of the line being here, if our line is to be drawn in 
this octant okay, if we have to draw line starting from this point with the slope like this and the 
direction of maximum motion is the y direction. So if the direction of maximum motion is the y 
direction then my algorithm will change accordingly. What will be the changes? Interchange x 
and y. Again? Interchange x and y. We will essentially interchange x and y, so we will have to 
rewrite the algorithm with x and y interchanged. Similarly we have to make similar changes if 
my line is like this or like this or in any other octant.

(Refer Slide Time: 00:28:32 min)
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So the algorithm, the way I have written right now is only for drawing lines in the first octant and
in this, Δy= y2− y1 , Δx=x2−x 1 and of course e is the error term, x and y are the 
coordinates of the current pixel being displayed. Of all these x1 x2 y1 y2 they have to be integers 
because we are talking of drawing a line from one pixel to a second pixel. Pixels will always be 
addressed by integers, so x1 x2 y1 y2 they are all integers. Therefore Δ x and Δy they are also 
integers. Okay. x and y will also be integers. The only thing that is not a integer here is this error 
term e. e has to be a real number. Similarly all these are the places where e is being used, e has to
be a real number because we are dividing two integers and we have a real number 0.5 coming in 
the picture, so e has to be a real number. And if you notice in this complete algorithm e is 
important only for finding out the sign of e, we are only bothered about whether e is positive or 
whether e is negative, we are not bothered about the actual magnitude of e.

Since we are not bothered about the actual magnitude of e, we will say that instead of coding the 
algorithm on the basis of e, we will code it in terms of e multiplied by x multiplied by two. What 
I mean is, if I consider, if I take this statement and multiply it by 2*Δ x, if I multiply 2*Δ x, my 
statement will become e=Δy∗(2−Δx) . sorry. Now my error term e is not the error term 
which we had shown in the figure earlier but it is that error term multiplied by 2*Δ x. So error is 
equal to or e=Δy∗(2−Δx ) . Though other places where I am changing e or this line and this 
line, these statements also I will multiply it by the same amount 2*Δ x. So this statement will 
become, e = e -2*Δ x and this statement will become e = e +2*Δ y.

If I make these changes, my program will still be valid because I am only bothered about the sign
of e. So wherever I am using e I have multiplied it by a constant amount, so sign of e will still 
remain the same. Mind you, Δ x is a positive number because in this case I have taken x2 >x1 so Δ
x is a positive number, so I have multiplied my term e by a positive number, by a positive 
constant. So the sign would remain the same throughout which effectively means this statement 
will be replaced by this one, this will be replaced by this one and this statement will be replaced 
by this one. E will also become an integer. Pardon; now e will also become an integer. Now e 



will also become an integer. The reason why I am doing this is after this all my variables will 
become integers.

I don’t, I will not deal with any real numbers and in addition to that I will not have any division 
in my algorithm. There will be no integers and no divisions which means the algorithm can be 
very easily implemented on hardware and the algorithm will be very fast because integer 
numbers will take less memory and integer addition and multiplication are easier to carry out, 
there is no division involved. And this version of the algorithm is referred to as integer 
Bresenhem’s algorithm, integer Bresenhem’s algorithm, okay, the integer version of the 
Bresenhem’s algorithm. Any question on the integer version of the Bresenhem’s algorithm? This 
algorithm is superior to the previous algorithms primarily because you are dealing only with the 
integers and we don’t have any division in the algorithm. If we don’t have divisions, the 
computations are faster, divisions are very expensive. So this is the integer version of the 
Bresenhem’s algorithm.
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Now the next thing that we will take up is how to draw curves, how to start with, drawing of 
circles. For drawing circles we will again use what is referred to as a DDA algorithm, digital 
differential analyzer based algorithm. In this DDA algorithm when we are drawing a straight 
line, we had said that the slope was equal to a constant which was y2 - y1/ x2 - x1. If we have to 
draw a circle then let’s say this is the origin which is 0 0, at any point x y what is the slope? For a

circle how much is 
dy
dx

? [Conversation between Student and Professor - Not audible 

((00:36:51 min))] it will be minus x / y. You can verify it very easily, you know the equation of a 
circle is  x2

+ y2
=r2 . The circle is passing through the origin, differentiated with respect to x 



we will get 2x+2
y∗dy
dx

=0 and this will give us this, 
dy
dx

=
−x
y

. So basically we were using

this fact that 
dy
dx

=
−x
y

.

If you remember the line drawing DDA algorithm, we had said that if x y is a pixel that has been 
drawn at a particular stage, the next pixel to be drawn will be x + ε*Δx,  y + ε*Δy. So this 

increment was proportional to 
dy
dx

. We will do the same thing now, we will say that from x y 

the next pixel to be drawn will be by an increment proportional to this 
dy
dx

. So if you are 

taking increment proportional to this  
dy
dx

, my x = x + ε*y and y =y-ε*x , where 
dy
dx

=
−x
y

. 

Okay. My increment in the y direction is –ε* x, my increment in the x direction is ε* y, so the 

ratio is - 
x
y

. So we are taking an increment in both x and y, a very small amounts so that the 

next pixel to be drawn will be in the direction of the tangent, will be in the direction of the slope 
at that point. So you just look at this figure.
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This is the pixel x y, we are talking in a. This is the initial pixel being drawn. The next pixel to be
drawn is along the slope of the curve, the slope of the circle at that point. That will be a pixel 
let’s say somewhere on this tangent at a point like this. So if I call this pixel, this particulate pixel



as xn yn and the next pixel to be displayed as xn+1 yn+1. I can write xn+1 = xn  +ε*yn and                 
yn+1 = yn –ε* * xn. Sir if we want to draw n+2 then xn+1 yn+1, the slope at that point will not be 
defined because it is not lying on the circle. I am just coming to that.

Now if xn yn is a particular pixel that has been drawn, the next pixel to be drawn we are giving by
xn+1 yn+1 or I can write it in the form of a matrix xn+1 yn+1 is equal to xn yn multiplied by, what will 
it be? xn and yn, so 1 epsilon minus epsilon 1. Is that okay? is that okay? Thanks. So xn+1 yn+1 can 
be found out by this system of linear equations. Is that all right? Now if I keep applying this 
relation consecutively this is the first pixel that has been drawn, next pixel is this. The next pixel 
to be drawn would again be found out by the same relation, so my xn+1 yn+1 will become xn yn and 
then at from this point I will take a tangent like this and I will continue in that process. But 
effectively what is happening is this point xn+1 yn+1 is slightly further off from the center than the 
point xn yn. It is not exactly at the same radius. The difference will be very small but there will be
a difference. This distance would be r and how much would this distance be? We can find out 
from here. If you want to find out the magnitude of or the radius of this point xn+1 yn+1, we will 
get( xn+1 )2 +( yn+1 )2= [( xn )2 + ( yn )2]* (1+ε2), that is the magnitude of this determinant.

So the distance of this point xn+1 yn+1 from the origin will be, if this distance is r = r*(1+ε2)1/2 or 
the new  r = r*(1+ε2), even though epsilon will be a very small number. But even then as we keep
repeating this process throughout the circle, by the time I come back here I will not close here 
but I will close slightly further off. Some error will creep in because the same process is being 
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repeated throughout. So effectively we will get a spiral and not a circle because the radius will 
keep increasing by an amount of (1+ε2)1/2 or by a factor of (1+ε2) every time. To avoid that 
instead of using this relationship, instead of using this relationship or this system of equations 
what we will do is instead of using it this way we will make a small change so xn we will make it 
xn+1. And if we represent this in a similar matrix notation like last time you will get. you can 
verify the relationships.

(Refer Slide Time: 00:45:23 min)



Essentially instead of xn+1 we put in this expression and then again we write it in the matrix form.
Now if I look at the radius at this point I will get this multiplied by magnitude, the value of this 
determinant. What is the value of this determinant? one into one minus epsilon square minus this,
which is 1one. So the radius here it is Rn+1 will be equal to the radius at Rn. So just by making 
this small change, we will be able to get a circle accurately.
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So the next point instead of being here will be at the circle boundary and the circle instead of 
becoming a spiral and ending here will end at this location. So this is how we can draw a circle 
using the DDA algorithm. If we want to draw any other curve, if we know the equation of the 

curve you can again find out the slope. For any curve if you know about the value of 
dy
dx

then 

we can draw that curve by taking increments proportional to dy and proportional to dx. Let’s say 



if I know the  
dy
dx

=−x2
, this is for the sake of argument. Then I will give an increment in the 

y direction which will be proportional to x2 and we can continue that way. What will be the exact
proportionality constant?

Now in the case of drawing the circle, I am multiplying ε by yn. Here I am multiplying ε*xn +1. 
Instead of both yn and xn will be in the range of - r to + r. If you are drawing a circle xn and yn will
always vary from - r to + r, so ε*xn or ε*x < 1 pixel that is our initial criteria. If it is very much 
less than one pixel then we do wasteful computation. If it is more than 1 pixel then we don’t 
draw all the pixels, so epsilon x should be just less than 1 pixel. So again one criteria we can use 
is we will take epsilon to be equal to one over two to the power n such that two to the power n 
will just be greater than r. If  2n  > r and r > 2n  -1. So let’s say if the radius is 50 then our n will be
6 , ε will be 2-6 .

So if you are drawing a circle with a radius of 50 pixels then our epsilon is one by 64. So every 
time we give an increment that increment will be of 50 by 64 or minus 50 by 64 that’s the 
maximum increment will be given. Why can’t we put epsilon straight away 50? Because then at 
this point in the y direction my increment will become one pixel, it won’t be and in the x 
direction of course at this point the increment would be zero. So here the increment in the y 
direction will be one complete pixel, we might not want that. We will have to do that if that is the
case sometimes the circle at the end of the circle, we get a straight line sort of four quadrants.
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Even in this case we would, even in this case you would get that because I don’t know whether I 
have figure for that. Probably no. Anyway the pixels that would be displayed will look like this.

(Refer Slide Time: 00:51:12 min)

I mean a few straight then here like this, at the end will almost look vertical. Sir? Yeah. That is 
also have to do with division by power of two being easier. Division by power of two being 
easier. Yes sir. that is one because I am dividing by 2 every time, so if you have any number 



dividing it by 2 means 6 right shifts, I mean in this case 6 right shifts or n right shifts but as if 
you are going to divide it by 50 every time at this point the value of x and y is let’s say 30 and 
30. We have to divide 30 and 30 by 50 which is you are going to take more time than just doing n
right shifts, so that won’t be there. So, for finding out the value of epsilon this is one way of 
doing it.

The algorithm will work equally well if you just take a random value of epsilon as choosing 1 by
50 or something like that. We will still get a circle, algorithm would work. Sir what would 
happen if epsilon x is equal to 0.5, epsilon into x. It can become 0.5 so which pixel would we 
choose or next pixel or would we still remain on the same. We are rounding it off. If you 
remember in the DDA algorithm earlier we were rounding off whatever value we were 
computing, so whatever value for xn+1 and yn+1 we get, we will round off that value. If you want 
to change it to truncation you will have to add 0.5 every time and so on, you will add 0.5 once in 
the beginning and take care of that but nevertheless effect is of rounding it out.
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So if xn+1 comes out to be 50.5, we will take it to be 51. Any other question on this? In that case I 
think we will end today, we will end here today and in the next class we will go onto some other 
algorithms for display purposes specifically algorithms with respect to may be clipping and 
windowing and transformation and so on. Okay. That’s all.
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