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Maximum shear stress
We know that maximum shear stress,

max = 2 2 2 21 1
2 2( ) 4 (35.8) 4 (20.9)t

= 27.5 MPa Ans.

 
It has already been discussed in the previous chapter that strength of machine members is based

upon the mechanical properties of the materials used. Since these properties are usually determined
from simple tension or compression tests, therefore, predicting failure in members subjected to uni-
axial stress is both simple and straight-forward. But the problem of predicting the failure stresses for
members subjected to bi-axial or tri-axial stresses is much more complicated. In fact, the problem is
so complicated that a large number of different theories have been formulated. The principal theories
of failure for a member subjected to bi-axial stress are as follows:

1. Maximum principal (or normal) stress theory (also known as Rankine’s theory).
2. Maximum shear stress theory (also known as Guest’s or Tresca’s theory).
3. Maximum principal (or normal) strain theory (also known as Saint Venant theory).
4. Maximum strain energy theory (also known as Haigh’s theory).
5. Maximum distortion energy theory (also known as Hencky and Von Mises theory).
Since ductile materials usually fail by yielding i.e. when permanent deformations occur in the

material and brittle materials fail by fracture, therefore the limiting strength for these two classes of
materials is normally measured by different mechanical properties. For ductile materials, the limiting
strength is the stress at yield point as determined from simple tension test and it is, assumed to be
equal in tension or compression. For brittle materials, the limiting strength is the ultimate stress in
tension or compression.

 

According to this theory, the failure or yielding occurs at a point in a member when the maximum
principal or normal stress in a bi-axial stress system reaches the limiting strength of the material in a
simple tension test.

Since the limiting strength for ductile materials is yield point stress and for brittle materials
(which do not have well defined yield point) the limiting strength is ultimate stress, therefore according
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to the above theory, taking factor of safety (F.S.) into consideration, the maximum principal or normal
stress ( t1) in a bi-axial stress system is given by

t1 =
. .
yt

F S
, for ductile materials

=
. .
u

F S
, for brittle materials

where yt = Yield point stress in tension as determined from simple tension
test, and

u = Ultimate stress.
Since the maximum principal or normal stress theory is based on failure in tension or compression

and ignores the possibility of failure due to shearing stress, therefore it is not used for ductile materials.
However, for brittle materials which are relatively strong in shear but weak in tension or compression,
this theory is generally used.
Note : The value of maximum principal stress ( t1) for a member subjected to bi-axial stress system may be
determined as discussed in Art. 5.7.

 

According to this theory, the failure or yielding occurs at a point in a member when the maximum
shear stress in a bi-axial stress system reaches a value equal to the shear stress at yield point in a
simple tension test. Mathematically,

max = yt /F.S. ...(i)
where max = Maximum shear stress in a bi-axial stress system,

yt = Shear stress at yield point as determined from simple tension test,
and

F.S. = Factor of safety.
Since the shear stress at yield point in a simple tension test is equal to one-half the yield stress

in tension, therefore the equation (i) may be written as

max =
2 . .

yt

F S
This theory is mostly used for designing members of ductile materials.

Note: The value of maximum shear stress in a bi-axial stress system ( max) may be determined as discussed in
Art. 5.7.

 

According to this theory, the failure or yielding occurs at a point in a member when the maximum
principal (or normal) strain in a bi-axial stress system reaches the limiting value of strain (i.e. strain at
yield point) as determined from a simple tensile test. The maximum principal (or normal) strain in a
bi-axial stress system is given by

max = 1 2–
.

t t

E m E
 According to the above theory,

max = 1 2–
. . .

ytt t

E m E E F S
...(i)

where t1 and t2 = Maximum and minimum principal stresses in a bi-axial stress system,
= Strain at yield point as determined from simple tension test,

1/m = Poisson’s ratio,
E = Young’s modulus, and

F.S. = Factor of safety.




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From equation (i), we may write that
2

1 –
. .
ytt

t m F S
This theory is not used, in general, because it only gives reliable results in particular cases.

 

According to this theory, the failure or yielding occurs at a point in a member when the strain
energy per unit volume in a bi-axial stress system reaches the limiting strain energy (i.e. strain energy
at the yield point ) per unit volume as determined from simple tension test.

We know that strain energy per unit volume in a bi-axial stress system,

           U1 = 2 2 1 2
1 2

21 ( ) ( ) –
2

t t
t tE m

and limiting strain energy per unit volume for yielding as determined from simple tension test,

U2 =
2

1
2 . .

yt

E F S
According to the above theory, U1 = U2.

2
2 2 1 2

1 2
21 1( ) ( ) –

2 2 . .
ytt t

t tE m E F S

or ( t1)2 + ( t2)2 – 
2

1 22
. .
ytt t

m F S


This theory may be used for ductile materials.

 

According to this theory, the failure or yielding occurs at a point in a member when the distortion
strain energy (also called shear strain energy) per unit volume in a bi-axial stress system reaches the
limiting distortion energy (i.e. distortion energy at yield point) per unit volume as determined from a
simple tension test. Mathematically, the maximum distortion energy theory for yielding is expressed
as

( t1)2 + ( t2)
2 – 2 t1 × t2 = 

2

. .
yt

F S
This theory is mostly used for ductile materials in place of maximum strain energy theory.

Note: The maximum distortion energy is the difference between the total strain energy and the strain energy due
to uniform stress.




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Example 5.16. The load on a bolt consists of an axial pull of 10 kN together with a transverse
shear force of 5 kN. Find the diameter of bolt required according to

1. Maximum principal stress theory; 2. Maximum shear stress theory; 3. Maximum principal
strain theory; 4. Maximum strain energy theory; and 5. Maximum distortion energy theory.

Take permissible tensile stress at elastic limit = 100 MPa and poisson’s ratio = 0.3.
Solution. Given : Pt1 = 10 kN ; Ps = 5 kN ; t(el) = 100 MPa = 100 N/mm2 ; 1/m = 0.3
Let d = Diameter of the bolt in mm.

 Cross-sectional area of the bolt,

A = 4  × d2 = 0.7854 d 2  mm2

We know that axial tensile stress,

1 = 21
2 2

10 12.73 kN/mm
0.7854

tP
A d d

 

and transverse shear stress,

= 2
2 2

5 6.365 kN/mm
0.7854

sP
A d d

 

1. According to maximum principal stress theory
We know that maximum principal stress,

t1 = 2 21 2
1 2

1 ( – ) 4
2 2

= 2 21
1

1 ( ) 4
2 2

...( 2 = 0)

=
2 2

2 2 2
12.73 1 12.73 6.3654

22 d d d
 

= 2 2
6.365 1 6.365 4 4

2d d
  

= 2 2
2 2 2

6.365 1 15.365 15 3651 4 4 kN/mm N/mm
2d d d

   

According to maximum principal stress theory,

t1 = t(el)   or 2
15 365 100

d


d 2 = 15 365/100 = 153.65  or  d = 12.4 mm Ans.
2. According to maximum shear stress theory

We know that maximum shear stress,

max = 2 2 2 21 1
1 2 12 2( – ) 4 ( ) 4 ...( 2 = 0)

=
2 2

2 2 2
1 12.73 6.365 1 6.3654 4 4
2 2d d d

   

= 2 2
2 2

9 9000kN/mm N/mm
d d



According to maximum shear stress theory,

max = ( )

2
t el   or

2
9000 100 50

2d
 

d 2 = 9000 / 50 = 180   or   d = 13.42 mm Ans.




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3.  According to maximum principal strain theory
We know that maximum principal stress,

t1 = 2 21
1 2

1 15 365( ) 4
2 2 d

...(As calculated before)

and minimum principal stress,

t2 = 2 21
1

1– ( ) 4
2 2

=
2 2

2 2 2
12.73 1 12.73 6.365– 4

22 d d d


= 2 2
6.365 1 6.365– 4 4

2d d
 

= 2
2 2

6.365 – 2.6351 – 2 kN/mm
d d

2
2

– 2635 N/mm
d

We know that according to maximum principal strain theory,

1 2–t t

E mE
  = ( )t el

E
or 2

1 ( )– t
t t elm

2 2
15 365 2635 0.3 100

d d


    or 2
16 156 100

d


d 2 =16 156 / 100 = 161.56   or   d = 12.7 mm Ans.
4. According to maximum strain energy theory

We know that according to maximum strain energy theory,

( t1)2 + ( t2)2 – 1 22 t t

m
 = [ t(el)]2

2 2
2

2 2 2 2
15 365 – 2635 15 365 – 2635– 2 0.3 (100)

d d d d
    

6 6 6
3

4 4 4
236 10 6.94 10 24.3 10 10 10

d d d
  

   

4 4 4
23 600 694 2430 1

d d d
     or

4
26 724 1

d


d 4 = 26 724  or  d = 12.78 mm Ans.
5. According to maximum distortion energy theory

According to maximum distortion energy theory,
( t1)2 + ( t2)2 – 2 t1 × t2= [ t(el)]2

2 2
2

2 2 2 2
15 365 – 2635 15 365 – 2635– 2 (100)

d d d d
   

6 6 6
3

4 4 4
236 10 6.94 10 80.97 10 10 10

d d d
  

   

4 4 4
23 600 694 8097 1

d d d
   or 4

32 391 1
d



d4 = 32 391  or  d = 13.4 mm Ans.

    


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Example 5.17. A cylindrical shaft made of steel of yield strength 700 MPa is subjected to static
loads consisting of bending moment 10 kN-m and a torsional moment 30 kN-m. Determine the diameter
of the shaft using two different theories of failure, and assuming a factor of safety of 2. Take E = 210
GPa and poisson's ratio = 0.25.

Solution. Given : yt = 700 MPa = 700 N/mm2 ; M = 10 kN-m = 10 × 106 N-mm ; T = 30 kN-m
= 30 × 106 N-mm ; F.S. = 2 ; E = 210 GPa = 210 × 103 N/mm2 ; 1/m = 0.25

Let d = Diameter of the shaft in mm.
First of all, let us find the maximum and minimum principal stresses.
We know that section modulus of the shaft

Z =
32

 × d 3 = 0.0982 d3 mm3

  Bending (tensile) stress due to the bending moment,

1 =
6 6

2
3 3

10 10 101.8 10 N/mm
0.0982

M
Z d d

 
 

and shear stress due to torsional moment,

=
6 6

2
3 3 3

16 16 30 10 152.8 10 N/mmT
d d d

  
 

We know that maximum principal stress,

t1 = 2 21 2
1 2

1 ( – ) 4
2 2

= 2 21
1

1 ( ) 4
2 2

...( 2 = 0)

=
2 26 6 6

3 3 3
101.8 10 1 101.8 10 152.8 104

22d d d
  

 

=
6 6

2 2
3 3

50.9 10 1 10 (101.8) 4 (152.8)
2d d


  

=
6 6 6

2
3 3 3

50.9 10 161 10 211.9 10 N/mm
d d d
  

 

and minimum principal stress,

t2 = 2 21 2
1 2

1– ( – ) 4
2 2

= 2 21
1

1– ( ) 4
2 2

...( 2 = 0)

=
6 6 6

2
3 3 3

50.9 10 161 10 – 110.1 10– N/mm
d d d
  



Let us now find out the diameter of shaft (d) by considering the maximum shear stress theory
and maximum strain energy theory.
1. According to maximum shear stress theory

We know that maximum shear stress,

max =
6 6 6

1 2
3 3 3

1 211.9 10 110.1 10 161 10
2 2

t t

d d d
  

  

We also know that according to maximum shear stress theory,

max =
2 . .

yt

F S
   or

6

3
161 10 700 175

2 2d


 


d 3 = 161 × 106 / 175 = 920 × 103  or d = 97.2 mm Ans.


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Note: The value of maximum shear stress ( max) may also be obtained by using the relation,

max = 2 21
12 ( ) 4

=
2 26 6

3 3
1 101.8 10 152.8 10

4
2 d d

 


=
6

2 2
3

1 10 (101.8) 4 (152.8)
2 d
 

=
6 6

2
3 3

1 10 161 10
322 N/mm

2 d d


   ...(Same as before)

2. According to maximum strain energy theory
We know that according to maximum strain energy theory,

2
2 2 1 2

1 2
21 1( ) ( ) –

2 2 . .
ytt t

t tE m E F S

or                         ( t1)
2 + ( t2)

2 – 
2

1 22
. .
ytt t

m F S


2 2 26 6 6 6

3 3 3 3
211.9 10 – 110.1 10 211.9 10 – 110.1 10 700– 2 0.25

2d d d d
   

    

or         
12 12 12

6 6 6
44 902 10 12 122 10 11 665 10 122 500

d d d
  

  

12

6
68 689 10 122 500

d




d 6 = 68 689 × 1012/122 500 = 0.5607 × 1012  or d = 90.8 mm Ans.
Example 5.18. A mild steel shaft of 50 mm diameter is subjected to a bending moment of 2000

N-m and a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of
this torque without causing yielding of the shaft according to 1. the maximum principal stress; 2. the
maximum shear stress; and 3. the maximum distortion strain energy theory of yielding.

Solution. Given: d = 50 mm ; M = 2000 N-m = 2 × 106 N-mm ; yt = 200 MPa = 200 N/mm2

Let T = Maximum torque without causing yielding of the shaft, in N-mm.
1.  According to maximum principal stress theory

We know that section modulus of the shaft,

Z =
32

 × d3 = 32  (50)3 = 12 273 mm3

 Bending stress due to the bending moment,

1 =
6

22 10 163 N/mm
12 273

M
Z


 

and shear stress due to the torque,

= 3 3
16 16

(50)
T T

d
  = 0.0407 × 10–3 T N/mm2

... 3
16

T d

We know that maximum principal stress,

t1 = 2 21
1

1 ( ) 4
2 2

= 2 –3 2163 1 (163) 4 (0.0407 10 )
2 2

T  
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    = –9 2 281.5 6642.5 1.65 10 N/mmT  

Minimum principal stress,

t2  = 2 21
1

1– ( ) 4
2 2

        = 2 –3 2163 1– (163) 4 (0.0407 10 )
2 2

T 

        = –9 2 281.5 – 6642.5 1.65 10 N/mmT 

and maximum shear stress,

max  = 2 2 2 –3 21 1
12 2( ) 4 (163) 4 (0.0407 10 )T

        = –9 2 26642.5 1.65 10 N/mmT 

We know that according to maximum principal stress theory,
t1  = yt ...(Taking F.S. = 1)

–9 281.5 6642.5 1.65 10 200T   

         6642.5 + 1.65 + 10–9 T 2  = (200 – 81.5)2 = 14 042

T 2  = 9
–9

14 042 – 6642.5 4485 10
1.65 10

 


or  T  = 2118 × 103 N-mm = 2118 N-m Ans.
2.  According to maximum shear stress theory

We know that according to maximum shear stress theory,

max  = yt = 
2
yt

–9 2 2006642.5 1.65 10 100
2

T   

         6642.5 + 1.65 × 10–9 T 2 = (100)2 = 10 000

T 2  =  9
–9

10 000 – 6642.5 2035 10
1.65 10

 


T = 1426 × 103 N-mm = 1426 N-m Ans.
3.  According to maximum distortion strain energy theory

We know that according to maximum distortion strain energy theory
                        ( t1)2 + ( t2)2 – t1 × t2 = ( yt)2

2 2
–9 2 –9 281.5 6642.5 1.65 10 81.5 – 6642.5 1.65 10T T     

–9 2 –9 2 2– 81.5 6642.5 1.65 10 81.5 – 6642.5 1.65 10 (200)T T     

2 –9 2 2 –9 2 22 (81.5) 6642.5 1.65 10 – (81.5) – 6642.5 1.65 10 (200)T T     

(81.5)2 + 3 × 6642.5 + 3 × 1.65 × 10–9 T 2 = (200)2

  26 570 + 4.95 × 10–9 T 2 = 40 000

   T 2 = 9
–9

40 000 – 26 570 2713 10
4.95 10

 


T  = 1647 × 103 N-mm = 1647 N-m Ans.
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   

An external load, whose line of action is parallel but does not coincide with the centroidal axis
of the machine component, is known as an eccentric load. The distance between the centroidal axis
of the machine component and the eccentric load is called eccentricity and is generally denoted by e.
The examples of eccentric loading, from the subject point of view, are C-clamps, punching machines,
brackets, offset connecting links etc.

Fig. 5.19. Eccentric loading.
Consider a short prismatic bar subjected to a compressive load P acting at an eccentricity of e as

shown in Fig. 5.19 (a).
Let us introduce two forces P1 and P2 along the centre line or neutral axis equal in magnitude to

P, without altering the equilibrium of the bar as shown in Fig. 5.19 (b). A little consideration will
show that the force P1 will induce a direct compressive stress over the entire cross-section of the bar,
as shown in Fig. 5.19 (c).

The magnitude of this direct compressive stress is given by

o = 1P
A

 or 
P
A

, where A is the cross-sectional area of the bar.

The forces P1 and P2 will form a couple equal to P × e which will cause bending stress. This
bending stress is compressive at the edge AB and tensile at the edge CD, as shown in Fig. 5.19 (d).
The magnitude of bending stress at the edge AB is given by

b =
. . cP e y

I  (compressive)
and bending stress at the edge CD,

b =
. . tP e y

I
 (tensile)


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where yc and yt = Distances of the extreme fibres on the compressive and tensile sides,
from the neutral axis respectively, and

I = Second moment of area of the section about the neutral axis i.e.
Y-axis.

According to the principle of superposition, the maximum or the resultant compressive stress at
the edge AB,

c =
. .

 cP e y P
I A

*
b o

M P
Z A

and the maximum or resultant tensile stress at the edge CD,

t =
. .

– –t
b o

P e y P M P
I A Z A

The resultant compressive and tensile stress diagram is shown in Fig. 5.19 (e).

Notes: 1. When the member is subjected to a tensile load, then the
above equations may be used by interchanging the subscripts c and t.

2. When the direct stress o is greater than or equal to bending
stress b, then the compressive stress shall be present all over the
cross-section.

3. When the direct stress o is less than the bending stress b,
then the tensile stress will occur in the left hand portion of the cross-
section and compressive stress on the right hand portion of the cross-
section. In Fig. 5.19, the stress diagrams are drawn by taking o less
than b.

In case the eccentric load acts with eccentricity about two axes,
as shown in Fig. 5.20, then the total stress at the extreme fibre

                   = 
XX YY

. .. . yx P e yP P e x
A I I
 

Fig. 5.20. Eccentric load with
eccentricity about two axes.

* We know that bending moment, M = P.e and section modulus, Z = orc t

I I
y y y


Bending stress, b = M / Z

   


























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Fig. 5.22

Fig. 5.21

Example 5.19. A rectangular strut is 150 mm wide and 120 mm thick. It carries a load of 180
kN at an eccentricity of 10 mm in a plane bisecting the thickness as shown in Fig. 5.21. Find the
maximum and minimum intensities of stress in the section.

Solution. Given : b = 150 mm ; d = 120 mm ; P = 180 kN
= 180 × 103 N ; e = 10 mm

We know that cross-sectional area of the strut,
A = b.d = 150 × 120

= 18 × 103 mm2

 Direct compressive stress,

o =
3

3
180 10
18 10

P
A





= 10 N/mm2 = 10 MPa

Section modulus for the strut,

Z =
3 2

YY . /12 .
/ 2 6

I d b d b
y b

 

=
2120 (150)

6
= 450 × 103 mm3

Bending moment, M = P.e = 180 × 103 × 10
= 1.8 × 106 N-mm

Bending stress, b =
6

3
1.8 10
450 10

M
Z





= 4 N/mm2 = 4 MPa

Since o is greater than b, therefore the entire cross-section of the strut will be subjected to
compressive stress. The maximum intensity of compressive stress will be at the edge AB and
minimum at the edge CD.

 Maximum intensity of compressive stress at the edge AB
= o + b = 10 + 4 = 14 MPa Ans.

and minimum intensity of compressive stress at the edge CD
= o – b = 10 – 4 = 6 MPa Ans.

Example 5.20. A hollow circular column of external diameter
250 mm and internal diameter 200 mm, carries a projecting bracket
on which a load of 20 kN rests, as shown in Fig. 5.22. The centre of
the load from the centre of the column is 500 mm. Find the stresses
at the sides of the column.

Solution.  Given : D = 250 mm ; d = 200 mm ;
P = 20 kN = 20 × 103 N ; e = 500 mm

We know that cross-sectional area of column,

A = 4  (D2 – d2)

=
4

 [(250)2 – (200)2]
= 17 674 mm2

 Direct compressive stress,

o =
3

220 10 1.13 N/mm
17 674

P
A


 

= 1.13 MPa


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





 






















Section modulus for the column,

Z =
4 4–

64
/ 2

D dI
y D
  = 

4 4(250) – (200)
64

250 / 2
=905.8 × 103 mm3

Bending moment,
M = P.e

= 20 × 103 × 500
=10 × 106 N-mm

 Bending stress,

b =
6

3
10 10

905.8 10
M
Z






=  11.04 N/mm2

= 11.04 MPa
Since o is less than b, therefore right

hand side of the column will be subjected to
compressive stress and the left hand side of the
column will be subjected to tensile stress.

  Maximum compressive stress,

c = b + o = 11.04 + 1.13

=  12.17 MPa Ans.

and maximum tensile stress,

t = b – o = 11.04 – 1.13 = 9.91 MPa Ans.
Example 5.21. A masonry pier of width 4 m and thickness 3 m, supports a load of 30 kN as

shown in Fig. 5.23. Find the stresses developed at each corner of the pier.
Solution. Given: b = 4 m ; d = 3 m ; P = 30 kN ; ex = 0.5 m ; ey = 1 m
We know that cross-sectional area of the pier,

A = b × d = 4 × 3 = 12 m2

Moment of inertia of the pier about X-axis,

IXX = 
3 3

4. 4 3 9 m
12 12

b d 
 

and moment of inertia of the pier about Y-axis,

IYY = 
3 3

4. 3 4 16 m
12 12

d b 
 

Distance between X-axis and the corners A and B,
x = 3 / 2 = 1.5 m

Distance between Y-axis and the corners A and C,
y = 4 / 2 = 2 m

We know that stress at corner A,

A =
XX YY

. .. . yx P e yP e xP
A I I
  ... [   At A, both x and y are +ve]

Fig. 5.23
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=
30 30 0.5 1.5 30 1 2
12 9 16

   
 

= 2.5 + 2.5 + 3.75 = 8.75 kN/m2 Ans.
Similarly stress at corner B,

B =
XX YY

. .. .
– yx P e yP e xP

A I I
 ... [   At B, x is +ve and y is –ve]

=
30 30 0.5 1.5 30 1 2–
12 9 16

   


= 2.5 + 2.5 – 3.75 = 1.25 kN/m2 Ans.
Stress at corner C,

C =
XX YY

. .. .– yx P e yP e xP
A I I

 ... [At C, x is –ve and y is +ve]

=
30 30 0.5 1.5 30 1 2–
12 9 16

   


= 2.5 – 2.5 + 3.75 = 3.75 kN/m2 Ans.
and stress at corner D,

D =
XX YY

. .. .
– – yx P e yP e xP

A I I
... [At D, both x and y are – ve]

=
30 30 0.5 1.5 30 1 2– –
12 9 16

   

= 2.5 – 2.5 – 3.75 = – 3.75 kN/m2 = 3.75 kN/m2 (tensile) Ans.
Example 5.22. A mild steel link, as shown in Fig. 5.24 by full lines, transmits a pull of 80 kN.

Find the dimensions b and t if b = 3t.
Assume the permissible tensile stress as
70 MPa. If the original link is replaced
by an unsymmetrical one, as shown by
dotted lines in Fig. 5.24, having the same
thickness t, find the depth b1, using the
same permissible stress as before.

Solution. Given : P = 80 kN
= 80 × 103 N ; t = 70 MPa = 70 N/mm2

When the link is in the position shown by full lines in Fig. 5.24, the area of cross-section,
A = b × t = 3 t × t = 3 t 2 ...( b = 3 t )

We know that tensile load (P),
80 × 103 = t × A = 70 × 3 t2 = 210 t2

t2 = 80 × 103 / 210 = 381  or  t = 19.5 say 20 mm Ans.
and b = 3 t  = 3 × 20 = 60 mm Ans.

When the link is in the position shown by dotted lines, it will be subjected to direct stress as well
as bending stress. We know that area of cross-section,

A1 = b1 × t

Fig. 5.24
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Fig. 5.26

Direct tensile stress,

o =
1




P P
A b t

and bending stress, b = 2
1

. 6 .
( )

 
M P e P e
Z Z t b ...

2
1( )

6


t bZ

Total stress due to eccentric loading

= 2
1 1 11

6 . 6 1
.( ) 

b o
P e P P e

b t t b bt b
Since the permissible tensile stress is the same as 70 N/mm2, therefore

70 =
3 3

1

1 1 1

680 10 16 101
20 2

 
 



b
b b b ... 1Eccentricity,

2


be

b1 = 16 × 103 / 70 = 228.6 say 230 mm Ans.
Example 5.23. A cast-iron link, as shown in Fig. 5.25, is to carry a load of 20 kN. If the tensile

and compressive stresses in the link are not to exceed 25 MPa and 80 MPa respectively, obtain the
dimensions of the cross-section of the link at the middle of its length.

Fig. 5.25
Solution. Given : P = 20 kN = 20 × 103 N ; t(max) = 25 MPa = 25 N/mm2 ; c(max) = 80 MPa

= 80 N/mm2

Since the link is subjected to eccentric loading, therefore there
will be direct tensile stress as well as bending stress. The bending
stress at the bottom of the link is tensile and in the upper portion is
compressive.

We know that cross-sectional area of the link,

A = 3a × a + 2 × 2
3
a  × 2a

= 5.67 a2 mm2

  Direct tensile stress,

o =
3

2
2 2

20 10 3530 N/mm
5.67

P
A a a


 

Now let us find the position of centre of gravity (or neutral axis) in order to find the bending
stresses.

Let y = Distance of neutral axis (N.A.) from the bottom of the link as shown
in Fig. 5.26.

y =

2
2

2

43 2 2
2 3 1.2 mm

5.67

a aa a
a

a

   

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Moment of inertia about N.A.,

3
3 2

2 2 2

2 (2 )3 433 (1.2 – 0.5 ) 2 (2 – 1.2 )
12 12 3

a aa a aI a a a a a



   

= (0.25 a4 + 1.47 a4) + 2 (0.44a4 + 0.85 a4) = 4.3 a4 mm4

Distance of N.A. from the bottom of the link,

yt = y  = 1.2 a mm
Distance of N.A. from the top of the link,

yc = 3 a – 1.2 a = 1.8 a mm
Eccentricity of the load (i.e. distance of N.A. from the point of application of the load),

e = 1.2 a – 0.5 a = 0.7 a mm
We know that bending moment exerted on the section,

M = P.e = 20 × 103 × 0.7 a = 14 × 103 a N-mm
Tensile stress in the bottom of the link,

t =
t

M
Z

  =
3

4 2
. 14 10 1.2 3907

/ 4.3
 

  t

t

M yM a a
I y I a a

and compressive stress in the top of the link,

c =
3

4 2
. 14 10 1.8 5860

/ 4.3
c

c c

M yM M a a
Z I y I a a

 
   

We know that maximum tensile stress [ t (max)],

25 = 2 2 2
3907 5860 9767

t c a a a

a2 = 9767 / 25 = 390.7 or a = 19.76 mm ...(i)
and maximum compressive stress [ c(max)],

80 = c – 0 = 2 2 2
5860 3530 2330–

a a a


a2 = 2330 / 80 = 29.12 or a = 5.4 mm ...(ii)
We shall take the larger of the two values, i.e.

a = 19.76 mm Ans.
Example 5.24.  A horizontal pull P = 5 kN is exerted by the belting on one of the cast iron wall

brackets which carry a factory shafting. At a point 75 mm from the wall, the bracket has a T-section
as shown in Fig. 5.27. Calculate the maximum stresses in the flange and web of the bracket due to the
pull.




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Fig. 5.27
Solution. Given : Horizontal pull, P = 5 kN = 5000 N
Since the section is subjected to eccentric loading, therefore there will be direct tensile stress as

well as bending stress. The bending stress at the flange is tensile and in the web is compressive.
We know that cross-sectional area of the section,

A = 60 × 12 + (90 – 12)9 = 720 + 702 = 1422 mm2

  Direct tensile stress,


=
5000
1422

P
A
  = 3.51 N/mm2 = 3.51 MPa

Now let us find the position of neutral axis in order to determine the bending stresses. The
neutral axis passes through the centre of gravity of the section.

Let y = Distance of centre of gravity (i.e. neutral axis) from top of the flange.

y =

12 7860 12 78 9 12
2 2 28.2 mm
720 702

    




Moment of inertia of the section about N.A.,

I =
3 3

2 260 (12) 9 (78)720 (28.2 – 6) 702 (51 – 28.2)
12 12

  

= (8640 + 354 845) + (355 914 + 364 928) = 1 084 327 mm4












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Fig. 5.28

Distance of N.A. from the top of the flange,

yt = y  = 28.2 mm

Distance of N.A. from the bottom of the web,
yc = 90 – 28.2 = 61.8 mm

Distance of N.A. from the point of application of the load (i.e. eccentricity of the load),
e = 50 + 28.2 = 78.2 mm

We know that bending moment exerted on the section,
M = P × e = 5000 × 78.2 = 391 × 103 N-mm

Tensile stress in the flange,

t =
3

2. 391 10 28.2 10.17 N/mm
/ 1 084 327

t

t t

M yM M
Z I y I

 
   

= 10.17 MPa
and compressive stress in the web,

c =
3

2. 391 10 61.8 22.28 N/mm
/ 1 084 327

c

c c

M yM M
Z I y I

 
   

= 22.28 MPa
We know that maximum tensile stress in the flange,

t(max) = b + o = t + o = 10.17 + 3.51 = 13.68 MPa Ans.
and maximum compressive stress in the flange,

c(max) = b – o = c – o = 22.28 – 3.51 = 18.77 MPa Ans.
Example 5.25. A mild steel bracket as shown in Fig. 5.28, is subjected to a pull of 6000 N

acting at 45° to its horizontal axis. The bracket has a rectangular section whose depth is twice the
thickness. Find the cross-sectional dimensions of the bracket, if the permissible stress in the material
of the bracket is limited to 60 MPa.

Solution. Given : P = 6000 N ; = 45° ;  = 60 MPa = 60 N/mm2

Let t = Thickness of the section in mm, and
b = Depth or width of the section = 2 t ...(Given)

We know that area of cross-section,
A = b × t = 2 t × t = 2 t2 mm2

and section modulus, Z =
2

6
t b

=
2(2 )

6
t t

=
3

34 mm
6
t

Horizontal component of the load,
PH = 6000 cos 45°

= 6000 × 0.707
= 4242 N

 Bending moment due to horizontal
component of the load,

MH = PH × 75 = 4242 × 75 = 318 150 N-mm




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A little consideration will show that
the bending moment due to the horizontal
component of the load induces tensile
stress on the upper surface of the bracket
and compressive stress on the lower
surface of the bracket.

 Maximum bending stress on
the upper surface due to horizontal
component,

bH = HM
Z

3
318 150 6

4



t

2
3

477 225 N/mm (tensile)
t

Vertical component of the load,
PV = 6000 sin 45° = 6000 × 0.707 = 4242 N

 Direct stress due to vertical component,

oV = 2V
2 2

4242 2121 N/mm
2

P
A t t

   (tensile)

Bending moment due to vertical component of the load,
MV = PV × 130 = 4242 × 130 = 551 460 N-mm

This bending moment induces tensile stress on the upper surface and compressive stress on the
lower surface of the bracket.

 Maximum bending stress on the upper surface due to vertical component,

bV = 2V
3 3

551 460 6 827 190 N/mm
4

M
Z t t


   (tensile)

and total tensile stress on the upper surface of the bracket,

= 3 2 3 3 2
477 225 2121 827 190 1 304 415 2121

t t t t t
   

Since the permissible stress ( ) is 60 N/mm2, therefore

3 2
1 304 415 2121

t t
 = 60  or  3 2

21 740 35.4 1
t t

 

t = 28.4 mm Ans. ... (By hit and trial)
and b = 2 t  = 2 × 28.4 = 56.8 mm Ans.

Example 5.26. A C-clamp as shown in Fig. 5.29, carries a load P = 25 kN. The cross-section
of the clamp at X-X is rectangular having width equal to twice thickness. Assuming that the clamp is
made of steel casting with an allowable stress of 100 MPa, find its dimensions. Also determine the
stresses at sections Y-Y and Z-Z.

Solution. Given : P = 25 kN = 25 × 103 N ; t(max) = 100 MPa = 100 N/mm2

Dimensions at X-X
Let t = Thickness of the section at X-X in mm, and

b = Width of the section at X-X in mm = 2 t ...(Given)























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We know that cross-sectional area at X-X,
A = b × t = 2 t × t = 2 t2 mm2

Direct tensile stress at X-X,

o =
3

2
25 10

2
P
A t




=
3

2
3

12.5 10 N/mm
t


Bending moment at X-X due to the load P,

M = P × e = 25 × 103 × 140

= 3.5 × 106 N-mm

Section modulus, Z =
2 2 3

3. (2 ) 4 mm
6 6 6

t b t t t
 

...( b = 2t)

 Bending stress at X-X,

b =
6 6

2
3 3

3.5 10 6 5.25 10 N/mm
4

M
Z t t

  
   (tensile)

We know that the maximum tensile stress [ t (max)],

100 = o + b = 
3 6

2 3
12.5 10 5.25 10

t t
 



or      
3

2 3
125 52.5 10 – 1 0
t t


 

t = 38.5 mm Ans. ...(By hit and trial)
and b = 2 t = 2 × 38.5 = 77 mm Ans.
Stresses at section Y-Y

Since the cross-section of frame is uniform throughout, therefore cross-sectional area of the
frame at section Y-Y,

A = b sec 45° × t = 77 × 1.414 × 38.5 = 4192 mm2

Component of the load perpendicular to the section

= P cos 45° = 25 × 103 × 0.707 = 17 675 N

This component of the load produces uniform tensile stress over the section.

 Uniform tensile stress over the section,

= 17 675 / 4192 = 4.2 N/mm2 = 4.2 MPa

Component of the load parallel to the section

= P sin 45° = 25 × 103 × 0.707 = 17 675 N

This component of the load produces uniform shear stress over the section.

 Uniform shear stress over the section,

= 17 675 / 4192 = 4.2 N/mm2 = 4.2 MPa

Fig. 5.29


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We know that section modulus,

Z =
2 2

3 3( sec 45 ) 38.5 (77 1.414) 76 10 mm
6 6

t b  
  

Bending moment due to load (P) over the section Y-Y,
M = 25 × 103 × 140 = 3.5 × 106 N-mm

Bending stress over the section,

b =
6

3
3.5 10
76 10

M
Z





 = 46 N/mm2 = 46 MPa

Due to bending, maximum tensile stress at the inner corner and the maximum compressive stress
at the outer corner is produced.

 Maximum tensile stress at the inner corner,

t = b + o = 46 + 4.2 = 50.2 MPa
and maximum compressive stress at the outer corner,

c = b – o = 46 – 4.2 = 41.8 MPa
Since the shear stress acts at right angles to the tensile and compressive stresses, therefore

maximum principal stress (tensile) on the section Y-Y at the inner corner

= 2 2 2 21 50.2 1
( ) 4 (50.2) 4 (4.2) MPa

2 2 2 2
t

t

= 25.1 + 25.4 = 50.5 MPa Ans.
and maximum principal stress (compressive) on section Y-Y at outer corner

= 2 2 2 21 41.8 1( ) 4 (41.8) 4 (4.2) MPa
2 2 2 2
c

c

= 20.9 + 21.3 = 42.2 MPa Ans.

Maximum shear stress = 2 2 2 21 1
2 2( ) 4 (50.2) 4 (4.2) 25.4 MPat Ans.

Stresses at section Z-Z
We know that bending moment at section Z-Z,

= 25 × 103 × 40 = 1 × 106 N-mm

and section modulus, Z =
2 2. 38.5 (77)

6 6
t b

  = 38 × 103 mm3

 Bending stress at section Z-Z,

b =
6

3
1 10
38 10

M
Z





 = 26.3 N/mm2 = 26.3 MPa Ans.

The bending stress is tensile at the inner edge and compressive at the outer edge. The magnitude
of both these stresses is 26.3 MPa. At the neutral axis, there is only transverse shear stress. The shear
stress at the inner and outer edges will be zero.

We know that *maximum transverse shear stress,

max = 1.5 × Average shear stress = 
325 101.5 1.5

. 77 38.5
P

b t


  


= 12.65 N/mm2 = 12.65 MPa Ans.

* Refer Art. 5.16


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    

In the previous article, we have assumed that no shear force is acting on the section. But, in
actual practice, when a beam is loaded, the shear force at a section always comes into play along with
the bending moment. It has been observed that the effect of the shear stress, as compared to the
bending stress, is quite negligible and is of not much importance. But, sometimes, the shear stress at
a section is of much importance in the design. It may be noted that the shear stress in a beam is not
uniformly distributed over the cross-section but varies from zero at the outer fibres to a maximum at
the neutral surface as shown in Fig. 5.30 and Fig. 5.31.

Fig. 5.30. Shear stress in a rectangular beam. Fig. 5.31. Shear stress in a circular beam.
The shear stress at any section acts in a plane at right angle to the plane of the bending stress and

its value is given by

= .
.
F A y

I b






 
































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where F = Vertical shear force acting on the section,
I = Moment of inertia of the section about the neutral axis,
b = Width of the section under consideration,
A = Area of the beam above neutral axis, and

y = Distance between the C.G. of the area and the neutral axis.

The following values of maximum shear stress for different cross-section of beams may be noted
:

1. For a beam of rectangular section, as shown in Fig. 5.30, the shear stress at a distance y from
neutral axis is given by

=
2

2
3

3–
2 4 2 .
F h Fy
I b h

  (h2 – 4y2) ...
3.

12


b hI

and maximum shear stress,

max =
3

2 .
F

b h
... Substituting

2


hy

= 1.5 (average) ... ( ) Area .average
F F

b h
The distribution of stress is shown in Fig. 5.30.
2. For a beam of circular section as shown in Fig. 5.31, the shear stress at a distance y from

neutral axis is given by

=
2

2 2 2
4

16– ( – 4 )
3 4 3
F d Fy d y
I d



and the maximum shear stress,

max =
2

4

3
4

F

d

... Substituting
2


dy

= ( )
4
3 average

... ( )
2Area

4

average
F F

d

The distribution of stress is shown in Fig. 5.31.
3. For a beam of I-section as shown in Fig. 5.32, the maximum shear stress occurs at the neutral

axis and is given by

max =
2

2 2 .( – )
. 8 8
F B b hH h

I b


Fig. 5.32


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Shear stress at the joint of the web and the flange

=
8
F
I

 (H2 – h2)
and shear stress at the junction of the top of the web and bottom of the flange

=
8
F B
I b
  (H2 – h2)

The distribution of stress is shown in Fig. 5.32.
Example 5.27. A beam of I-section 500 mm deep and 200 mm wide has flanges 25 mm

thick and web 15 mm thick, as shown in Fig. 5.33 (a). It carries a shearing force of 400 kN. Find
the maximum intensity of shear stress in the section, assuming the moment of inertia to be
645 × 106 mm4. Also find the shear stress at the joint and at the junction of the top of the web
and bottom of the flange.

Solution. Given : H = 500 mm ; B = 200 mm ; h = 500 – 2 × 25 = 450 mm ; b = 15 mm ;
F = 400 kN = 400 × 103 N ; I = 645 × 106 mm4

Fig. 5.33
Maximum intensity of shear stress

We know that maximum intensity of shear stress,

max =
2

2 2 .( – )
. 8 8
F B b hH h

I b


=
3 2

2 2 2
6

400 10 200 15 450(500 – 450 ) N/mm
8 8645 10 15

 


 

= 64.8 N/mm2 = 64.8 MPa Ans.
The maximum intensity of shear stress occurs at neutral axis.

Note :The maximum shear stress may also be obtained by using the following relation :

max =
. .

.
F A y

I b
We know that area of the section above neutral axis,

A = 200 × 25 + 
450

2
 × 15 = 8375 mm2


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Distance between the centre of gravity of the area and neutral axis,

y = 200 25 (225 12.5) 225 15 112.5
187 mm

8375
    



max =
3

6
400 10 8375 187

645 10 15
  

 
 = 64.8 N/mm2 = 64.8 MPa Ans.

Shear stress at the joint of the web and the flange
We know that shear stress at the joint of the web and the flange

=
3

2 2 2 2 2
6

400 10( – ) (500) – (450) N/mm
8 8 645 10
F H h
I




 
= 3.7 N/mm2 = 3.7 MPa Ans.

Shear stress at the junction of the top of the web and bottom of the flange
We know that shear stress at junction of the top of the web and bottom of the flange

=
3

2 2 2 2 2
6

400 10 200( – ) (500) – (450) N/mm
8 158 645 10
F B H h
I b


  

 

= 49 N/mm2 = 49 MPa Ans.
The stress distribution is shown in Fig. 5.33 (b)



1. A steel shaft 50 mm diameter and 500 mm long is subjected to a twisting moment of 1100 N-m, the
total angle of twist being 0.6°. Find the maximum shearing stress developed in the shzaft and modulus
of rigidity. [Ans. 44.8 MPa; 85.6 kN/m2]

2. A shaft is transmitting 100 kW at 180 r.p.m. If the allowable stress in the material is 60 MPa, find the
suitable diameter for the shaft. The shaft is not to twist more than 1° in a length of 3 metres.
Take C = 80 GPa. [Ans. 105 mm]

3. Design a suitable diameter for a circular shaft required to transmit 90 kW at 180 r.p.m. The shear
stress in the shaft is not to exceed 70 MPa and the maximum torque exceeds the mean by 40%. Also
find the angle of twist in a length of 2 metres. Take C = 90 GPa. [Ans. 80 mm; 2.116°]

4. Design a hollow shaft required to transmit 11.2 MW at a speed of 300 r.p.m. The maximum shear
stress allowed in the shaft is 80 MPa and the ratio of the inner diameter to outer diameter is 3/4.

[Ans. 240 mm; 320 mm]
5. Compare the weights of equal lengths of hollow shaft and solid shaft to transmit a given torque for the

same maximum shear stress. The material for both the shafts is same and inside diameter is 2/3 of
outside diameter in case of hollow shaft. [Ans. 0.56]

6. A spindle as shown in Fig. 5.34, is a part of an industrial brake and is loaded as shown. Each load P
is equal to 4 kN and is applied at the mid point of its bearing. Find the diameter of the spindle, if the
maximum bending stress is 120 MPa. [Ans. 22 mm]

Fig. 5.34

7. A cast iron pulley transmits 20 kW at 300 r.p.m. The diameter of the pulley is 550 mm and has four
straight arms of elliptical cross-section in which the major axis is twice the minor axis. Find the
dimensions of the arm, if the allowable bending stress is 15 MPa. [Ans. 60 mm; 30 mm]
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8. A shaft is supported in bearings, the distance between their centres being 1 metre. It carries a pulley in
the centre and it weighs 1 kN. Find the diameter of the shaft, if the permissible bending stress for the
shaft material is 40 MPa. [Ans. 40 mm]

9. A punch press, used for stamping sheet metal, has a punching capacity of 50 kN. The section of the
frame is as shown in Fig. 5.35. Find the resultant stress at the inner and outer fibre of the section.

[Ans. 28.3 MPa (tensile); 17.7 MPa (compressive)]

Fig. 5.35 Fig. 5.36
10. A crane hook has a trapezoidal section at A-A as shown in Fig. 5.36. Find the maximum stress at

points P and Q. [Ans. 118 MPa (tensile); 62 MPa (compressive)]
11. A rotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial load of 5000

N, a steady torque of 50 N-m and maximum bending moment of 75 N-m. Calculate the factor of safety
available based on 1. Maximum normal stress theory; and 2. Maximum shear stress theory.
Assume yield strength as 400 MPa for plain carbon steel. If all other data remaining same, what
maximum yield strength of shaft material would be necessary using factor of safety of 1.686 and
maximum distortion energy theory of failure. Comment on the result you get.

[Ans. 1.752; 400 MPa]
12. A hand cranking lever, as shown in Fig. 5.37, is used to start a truck engine by applying a force

F = 400 N. The material of the cranking lever is 30C8 for which yield strength = 320 MPa; Ultimate
tensile strength = 500 MPa ; Young’s modulus = 205 GPa ; Modulus of rigidity = 84 GPa and poisson’s
ratio = 0.3.

Fig. 5.37
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Assuming factor of safety to be 4 based on yield strength, design the diameter ‘d’ of the lever at section
X-X near the guide bush using : 1. Maximum distortion energy theory; and 2. Maximum shear stress
theory. [Ans. 28.2 mm; 28.34 mm]

13. An offset bar is loaded as shown in Fig. 5.38. The weight of the bar may be neglected. Find the
maximum offset (i.e., the dimension x) if allowable stress in tension is limited to 70 MPa.

[Ans. 418 mm]

Fig. 5.38 Fig. 5.39

14. A crane hook made from a 50 mm diameter bar is shown in Fig. 5.39. Find the maximum tensile stress
and specify its location. [Ans. 35.72 MPa at A]

15. An overhang crank, as shown in Fig. 5.40 carries a tangential load of 10 kN at the centre of the
crankpin. Find the maximum principal stress and the maximum shear stress at the centre of the crank-
shaft bearing. [Ans. 29.45 MPa; 18.6 MPa]

Fig. 5.40 Fig. 5.41
16. A steel bracket is subjected to a load of 4.5 kN, as shown in Fig. 5.41. Determine the required

thickness of the section at A-A in order to limit the tensile stress to 70 MPa. [Ans. 9 mm]
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17. A wall bracket, as shown in Fig. 5.42, is subjected to a pull of P = 5 kN, at 60° to the vertical. The
cross-section of bracket is rectangular having b = 3t . Determine the dimensions b and t if the stress
in the material of the bracket is limited to 28 MPa. [Ans. 75 mm; 25 mm]

Fig. 5.42 Fig. 5.43
18. A bracket, as shown in Fig. 5.43, is bolted to the framework of a machine which carries a load P. The

cross-section at 40 mm from the fixed end is rectangular with dimensions, 60 mm × 30 mm. If the
maximum stress is limited to 70 MPa, find the value of P.

[Ans. 3000 N]
19. A T-section of a beam, as shown in Fig. 5.44, is subjected to a vertical shear force of 100 kN. Calcu-

late the shear stress at the neutral axis and at the junction of the web and the
flange. The moment of inertia at the neutral axis is 113.4 × 106 mm4.

[Ans. 11.64 MPa; 11 MPa; 2.76 MPa]

Fig. 5.44 Fig. 5.45
20. A beam of channel section, as shown in Fig. 5.45, is subjected to a vertical shear force of 50 kN. Find

the ratio of maximum and mean shear stresses. Also draw the distribution of shear stresses.
[Ans. 2.22]



1. Derive a relation for the shear stress developed in a shaft, when it is subjected to torsion.
2. State the assumptions made in deriving a bending formula.
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3. Prove the relation: M/I = /y = E/R

where M = Bending moment; I = Moment of inertia;  = Bending stress in a fibre at a distance y from
the neutral axis; E = Young’s modulus; and R = Radius of curvature.

4. Write the relations used for maximum stress when a machine member is subjected to tensile or com-
pressive stresses along with shearing stresses.

5. Write short note on maximum shear stress theory verses maximum strain energy theory.
6. Distinguish clearly between direct stress and bending stress.
7. What is meant by eccentric loading and eccentricity?
8. Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column,

when it is subjected to
(a) an eccentric load about one axis, and (b) an eccentric load about two axes.

      

1. When a machine member is subjected to torsion, the torsional shear stress set up in the member is
(a) zero at both the centroidal axis and outer surface of the member
(b) Maximum at both the centroidal axis and outer surface of the member
(c) zero at the centroidal axis and maximum at the outer surface of the member
(d) none of the above

2. The torsional shear stress on any cross-section normal to the axis is ......... the distance from the centre
of the axis.
(a) directly proportional to (b) inversely proportional to

3. The neutral axis of a beam is subjected to
(a) zero stress (b) maximum tensile stress
(c) maximum compressive stress (d) maximum shear stress

4. At the neutral axis of a beam,
(a) the layers are subjected to maximum bending stress
(b) the layers are subjected to tension (c) the layers are subjected to compression
(d) the layers do not undergo any strain

5. The bending stress in a curved beam is
(a) zero at the centroidal axis (b) zero at the point other than centroidal axis
(c) maximum at the neutral axis (d) none of the above

6. The maximum bending stress, in a curved beam having symmetrical section, always occur, at the
(a) centroidal axis (b) neutral axis
(c) inside fibre (d) outside fibre

7. If d = diameter of solid shaft and  = permissible stress in shear for the shaft material, then torsional
strength of shaft is written as

(a) 4
32

d (b) d loge

(c) 3
16

d (d) 3
32

d

8. If di and do are the inner and outer diameters of a hollow shaft, then its polar moment of inertia is

(a) 4 4( ) – ( )
32 o id d (b) 3 3( ) – ( )

32 o id d

(c) 2 2( ) – ( )
32 o id d (d) ( – )

32 o id d
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9. Two shafts under pure torsion are of identical length and identical weight and are made of same
material. The shaft A is solid and the shaft B is hollow. We can say that
(a) shaft B is better than shaft A
(b) shaft A is better than shaft B
(c) both the shafts are equally good

10. A solid shaft transmits a torque T. The allowable shear stress is . The diameter of the shaft is

(a) 3
16 T

(b) 3
32 T

(c) 3
64 T

(d) 3 16 T

11. When a machine member is subjected to a tensile stress ( t) due to direct load or bending and a shear
stress ( ) due to torsion, then the maximum shear stress induced in the member will be

(a) 2 21
2 ( ) 4t (b) 2 21

2 ( ) – 4t

(c) 2 2( ) 4t (d) ( t)
2 + 4 2

12. Rankine’s theory is used for
(a) brittle materials (b) ductile materials
(c) elastic materials (d) plastic materials

13. Guest’s theory is used for
(a) brittle materials (b) ductile materials
(c) elastic materials (d) plastic materials

14. At the neutral axis of a beam, the shear stress is
(a) zero (b) maximum
(c) minimum

15. The maximum shear stress developed in a beam of rectangular section is ........ the average shear
stress.

(a) equal to (b) 4
3  times

(c) 1.5 times



1. (b) 2. (a) 3. (a) 4. (d) 5. (b)
6. (c) 7. (c) 8. (a) 9. (a) 10. (a)

11. (a) 12. (a) 13. (b) 14. (b) 15. (c)







Variable Stresses in Machine Parts  

Variable Stresses in
Machine Parts



 
   


   


    
 


     
 


 


  
   


 


 
    


 


  


   


 



 


 
 


   


   


   



6
C
H
A
P
T
E
R

 

We have discussed, in the previous chapter, the
stresses due to static loading only. But only a few machine
parts are subjected to static loading. Since many of the
machine parts (such as axles, shafts, crankshafts, connecting
rods, springs, pinion teeth etc.) are subjected to variable or
alternating loads (also known as fluctuating or fatigue
loads), therefore we shall discuss, in this chapter, the
variable or alternating stresses.

 

Consider a rotating beam of circular cross-section
and carrying a load W, as shown in Fig. 6.1. This load
induces stresses in the beam which are cyclic in nature. A
little consideration will show that the upper fibres of the
beam (i.e. at point A) are under compressive stress and the
lower fibres (i.e. at point B) are under tensile stress. After
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