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Maximum shear stress
We know that maximum shear stress,

T = L[JooPr a2 | =1 [ {3587+ 4 (20977 ]

27.5 MPa Ans.

5.9 Theories of Failure Under Static Load

It has already been discussed in the previous chapter that strength of machine members is based
upon the mechanical properties of the materials used. Since these properties are usually determined
from simple tension or compression tests, therefore, predicting failure in members subjected to uni-
axial stress is both simple and straight-forward. But the problem of predicting the failure stresses for
members subjected to bi-axial or tri-axial stresses is much more complicated. In fact, the problem is
so complicated that a large number of different theories have been formulated. The principal theories
of failure for a member subjected to bi-axial stress are as follows:

1. Maximum principal (or normal) stress theory (also known as Rankine’s theory).

2. Maximum shear stress theory (also known as Guest’s or Tresca’s theory).

3. Maximum principal (or normal) strain theory (also known as Saint Venant theory).

4. Maximum strain energy theory (also known as Haigh’s theory).

5. Maximum distortion energy theory (also known as Hencky and Von Mises theory).

Since ductile materials usually fail by yielding i.e. when permanent deformations occur in the
material and brittle materials fail by fracture, therefore the limiting strength for these two classes of
materials is normally measured by different mechanical properties. For ductile materials, the limiting
strength is the stress at yield point as determined from simple tension test and it is, assumed to be
equal in tension or compression. For brittle materials, the limiting strength is the ultimate stress in
tension or compression.

5.10 Maximum Principal or Normal Stress Theory (Rankine’s Theory)

According to this theory, the failure or yielding occurs at a point in a member when the maximum
principal or normal stress in a bi-axial stress system reaches the limiting strength of the material in a
simple tension test.

Since the limiting strength for ductile materials is yield point stress and for brittle materials
(which do not have well defined yield point) the limiting strength is ultimate stress, therefore according
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are removed then be tapped off.
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\

Mixed raw
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furnace

Molten steel fluid can be poured
b into moulds or cast while fuild
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Iron ” Molten pig iron 4, the pig iron into steel

Pig iron is made from iron ore in a blast furnace. It is a brittle form of iron that confains 4-5 per cent carbon.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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to the above theory, taking factor of safety (F.S.) into consideration, the maximum principal or normal
stress (G,,) in a bi-axial stress system is given by

Oy . .
= ——, for ductile materials
F.S.

th
o, . .
= Fs for brittle materials
where o, = Yield point stress in tension as determined from simple tension

test, and
6, = Ultimate stress.

Since the maximum principal or normal stress theory is based on failure in tension or compression
and ignores the possibility of failure due to shearing stress, therefore it is not used for ductile materials.
However, for brittle materials which are relatively strong in shear but weak in tension or compression,
this theory is generally used.

Note : The value of maximum principal stress (c,) for a member subjected to bi-axial stress system may be
determined as discussed in Art. 5.7.

5.11 Maximum Shear Stress Theory (Guest’s or Tresca’s Theory)

According to this theory, the failure or yielding occurs at a point in a member when the maximum
shear stress in a bi-axial stress system reaches a value equal to the shear stress at yield point in a
simple tension test. Mathematically,

Toox = ryt/F.S. (1)
where Toax — Maximum shear stress in a bi-axial stress system,
Ty = Shear stress at yield point as determined from simple tension test,
and

FS. = Factor of safety.
Since the shear stress at yield point in a simple tension test is equal to one-half the yield stress
in tension, therefore the equation (i) may be written as
_ _ Oyt
Tnax = 53 Fs,
This theory is mostly used for designing members of ductile materials.
Note: The value of maximum shear stress in a bi-axial stress system (t__ ) may be determined as discussed in
Art. 5.7.

max:

5.12 Maximum Principal Strain Theory (Saint Venant’s Theory)

According to this theory, the failure or yielding occurs at a point in a member when the maximum
principal (or normal) strain in a bi-axial stress system reaches the limiting value of strain (i.e. strain at
yield point) as determined from a simple tensile test. The maximum principal (or normal) strainin a
bi-axial stress system is given by
_S%u _ %v

mx T E m.E
-~ According to the above theory,

€

e = Su _ %2 _ €= _ O (i)
max E m.E ExF.S.
where 0, and 6,, = Maximum and minimum principal stresses in a bi-axial stress system,

¢ = Strain at yield point as determined from simple tension test,
1/m = Poisson’s ratio,

E = Young’s modulus, and
FS. = Factor of safety.
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From equation (i), we may write that
S _ Oy
m F.S.
This theory is not used, in general, because it only gives reliable results in particular cases.

Ou —

5.13 Maximum Strain Energy Theory (Haigh’s Theory)

According to this theory, the failure or yielding occurs at a point in a member when the strain
energy per unit volume in a bi-axial stress system reaches the limiting strain energy (i.e. strain energy
at the yield point ) per unit volume as determined from simple tension test.

This double-decker A 380 has a passenger capacity of 655. Its engines and parts should be robust
which can bear high torsional and variable stresses.

We know that strain energy per unit volume in a bi-axial stress system,

1 20y X0
U = 2E {(Gu)z +(0)" - %}

and limiting strain energy per unit volume for yielding as determined from simple tension test,

(2]
U, = —| =2
2E \F.S.

According to the above theory, u =u,

2

1 2 2 20t1X0t2:| 1 [Gw]
== (Oy) + (0p) ———1= | =— | ——

2E {( u)"+ () m 2E \FS.

2
204X 0y _ [ Oyt j
m F.S.
This theory may be used for ductile materials.

or (6,)? + (0,)* -

5.14 Maximum Distortion Energy Theory (Hencky and Von Mises Theory)

According to this theory, the failure or yielding occurs at a point in a member when the distortion
strain energy (also called shear strain energy) per unit volume in a bi-axial stress system reaches the
limiting distortion energy (i.e. distortion energy at yield point) per unit volume as determined from a
simple tension test. Mathematically, the maximum distortion energy theory for yielding is expressed
as

2
o
_ yt
(6,)* +(0,)°-26,, %0, = [F.S.]

This theory is mostly used for ductile materials in place of maximum strain energy theory.

Note: The maximum distortion energy is the difference between the total strain energy and the strain energy due
to uniform stress.
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Example 5.16. The load on a bolt consists of an axial pull of 10 kN together with a transverse

shear force of 5 kN. Find the diameter of bolt required according to
1. Maximum principal stress theory; 2. Maximum shear stress theory; 3. Maximum principal
strain theory; 4. Maximum strain energy theory; and 5. Maximum distortion energy theory.
Take permissible tensile stress at elastic limit = 100 MPa and poisson’s ratio = 0.3.
Solution. Given: P, =10kN; P, =5kN ; Oyely = 100 MPa = 100 N/mm?; 1/m = 0.3
Let d = Diameter of the bolt in mm.

.. Cross-sectional area of the bolt,
T
A= 2 x 02 =0.7854 d? mm?
We know that axial tensile stress,

Po__ 10 1273, .

o, = = =
1 A 07854d% d?
and transverse shear stress,
R
ﬂc = — = =
A 07854d% d?
1. According to maximum principal stress theory

We know that maximum principal stress,

6+ 0 1
o, = ¥+E[./(01—02)2+4r2}

2

= ﬁ+%[./(01)2+4ﬂ:2} (7 0,=0)

2

5 6365, 2

1273 1 [12.73)2 [6 365)2
= + = +4
2d? 2 d? d?
6.365 1 6.365
= + =X Ja+4
dZ 2 dZ |: :|
6.365 1 15.365 m? 15 365 2
= l+=J4+4|= KN/mm* = ——— N/mm
d? [ 2 } d? d?
According to maximum principal stress theory,
15 365
G, =0C or —— =100
t1 t(el) q2

: d 2 =15 365/100 = 153.65 or d=12.4 mm Ans.
2. Accordmg to maximum shear stress theory
We know that maximum shear stress,

max %[V(61_62)2+4T2:|:%|: (61)2+4T2:| +(20,=0)
[\/[12 73} [ j ] 6.(;3265 [\/mJ
9

— kN/m
d?

T

|
N| -

N/

According to maximum shear stress theory,

_ Oen 9000 100
Tmax_T or dz ZTZSO

d? =9000/50=180 or d=13.42mm Ans.
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3. According to maximum principal strain theory
We know that maximum principal stress,

0y =%+ [Jrrae]- B2

...(As calculated before)

and minimum principal stress,

G, :%—%[«/(01)2+41:2]

1273 1 [\/[12.73}2+ . [6.365}21
S 2d? 2|V d? d?

1

2

6.365 6.365
=% [J4+4]
=535 7 2] = 2285 nymm?
d d
_Z 2(2535 N /mmZ Front view of a jet engine. The rotors un-

dergo high torsional and bending stresses.

We know that according to maximum principal strain theory,

O, (0 G (0
?tl - m—té = ~&oroy - ﬁz = Ot(en
16 156
15365  2635x03 _ 00 o 28196 _y5,
d? d? d

d? =16156/100=161.56 or d=12.7 mm Ans.
4. According to maximum strain energy theory
We know that according to maximum strain energy theory,
20X Oy

(th)z + (Gtz)z - = [G‘(e')]z
2 2
[15 ?;65} . [— 2235} .15 3265 y i235 x 0.3 = (100)2
d d d d
6 6 6
236x10°  6.94x10°  243x10° . .
d° d d*
23600 694 2430 , , 26724
d4 d4 d4 d4

. d* =26724 or d=12.78 mm Ans.
5. According to maximum distortion energy theory

According to maximum distortion energy theory,

(0)* + (0,)* - 20, X 6,,= [0 I?

2 2
15 365 — 2635 15365 - 2635 2
[ e } +[ e } -2 PR X e = (100)
6 6 6
236(;110 N 6.94d>: 10 . 80.9:;10 —10x10°
23600 694 8097 32 391
=1 or =1

U T

d4
d4 =32391 or d=13.4mm Ans.

Contents

Top



Contents

Torsional and Bending Stresses in Machine Parts = 157

Example 5.17. A cylindrical shaft made of steel of yield strength 700 MPa is subjected to static
loads consisting of bending moment 10 kN-m and a torsional moment 30 kN-m. Determine the diameter
of the shaft using two different theories of failure, and assuming a factor of safety of 2. Take E =210
GPa and poisson’'s ratio = 0.25.

Solution. Given : 6,, =700 MPa = 700 N/mm?; M = 10 KN-m = 10 x 108 N-mm ; T =30 kN-m
=30 x 105 N-mm ; ES. =2 ; E = 210 GPa = 210 x 10° N/mm?; 1/m = 0.25

Let d = Diameter of the shaft in mm.

First of all, let us find the maximum and minimum principal stresses.

We know that section modulus of the shaft

Z= 312 x d 3= 0.0982 d® mm?
~. Bending (tensile) stress due to the bending moment,
M  10x10° 101.8x10° 2
0, = 5= 3= 3 N/mm
) Z 0.0982d d
and shear stress due to torsional moment,
16T 16x30x10° 152.8x10°
Cond’ nd? d*
We know that maximum principal stress,

_06;+0, 1 \/ﬁ
Oy = T+E[ (6,-0y) +41 }
o 1
=22 o) av] (. 6,=0)

101.8x10° 1 (101.8 % 10° T (152.8 % 10° T
= —+t = +4
2d° 2 d3 d®

N/mm?

509%x10° 1 10° 5 5
= T b x=—|./(101.8)> + 4 (152.8

50.9x10%° 161x10%® 211.9x10° )
= e + PE = e N/mm

and minimum principal stress,

O, = Lz%—%[\/(cl_cz)z+4rz]
= %_%[./(GI)HMZ} (2 0, =0)

_ 50.9x10° 161x10° ~—110.1x10°
CE @
Let us now find out the diameter of shaft (d) by considering the maximum shear stress theory
and maximum strain energy theory.
1. According to maximum shear stress theory
We know that maximum shear stress,
6u—Op _ 1|211.9x10° 110.1x10° | _161x 10°

N/mm?

Tmax = 2 2 d3 + d3 d3
We also know that according to maximum shear stress theory,
o 161x10° 700
yt
T =— of ———=—=175
max - 2 F.S. g3 2%x2

d3 =161 x108/175 =920 x 10° or d=97.2 mm Ans.
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Note: The value of maximum shear stress (t,,..) may also be obtained by using the relation,

Tmax = _|:V (61)2+4T :|

1] [(1018x10°)  (152.8x10°Y
T2 d° M

- %x@[\/(lols) +4(1528)? |

1_10° 161x10°
= SX T x 322 = e N/mm? ...(Same as before)

2. According to maximum strain energy theory
We know that according to maximum strain energy theory,

2
: {(th) +(0)" - M} = é [G_yt]

2E m F.;.
20,X0 Oyt
or (o] 2 + (o 2 _ tl t2 — [ y ]
( 11) ( 12) m ES.
672 672 6 6
211.9x10 -110.1x10 211.9x10 -110.1x10 700
+ - 2X X x 0.25 =
d3 d3 d3 d3 2

12 12 12
or 44 90§6>< 10 N 12 1225 10 N 11 662510 122 500
12
68 68:6>< 107 _ 122 500
d 6 = 68689 x 10%2/122 500 = 0.5607 x 10*2 or d =90.8 mm Ans.

Example 5.18. A mild steel shaft of 50 mm diameter is subjected to a bending moment of 2000
N-m and a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of
this torque without causing yielding of the shaft according to 1. the maximum principal stress; 2. the
maximum shear stress; and 3. the maximum distortion strain energy theory of yielding.

Solution. Given: d =50 mm ; M = 2000 N-m = 2 x 10° N-mm ; 6, = 200 MPa = 200 N/mm?

Let T = Maximum torque without causing yielding of the shaft, in N-mm.
1. According to maximum principal stress theory

We know that section modulus of the shaft,

Z= 3—2 xd3 = 2 (50)3 = 12 273 mm3
-, Bending stress due to the bending moment,
6
o = M _2x10 163 Njmm?
1 Z 12273
and shear stress due to the torque,

107 101 0.0407 x 107 T N/mm?

T= = =0. x 10~ mm
nd® 7w (50)°

[T :Exrx dﬂ
) o 16
We know that maximum principal stress,

o} 1
o, = 71+E[J(01)2+4'cz}

- % + % [/ @632+ 4 (00407 x107°T)? |
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= 81.5 + 66425 + 1.65 x 10° T2 N/mm?

o, = %—%[«/(01)2+4r2}

? - % /1637 + 4 (0.0407 x10°T)? |

81.5 — | 6642.5 +1.65x10° T2 N/mm?

max = 7 UWJ =1 [\/(163)2 + 4 (0.0407 x 10-3T)2}

|/6642.5 +1.65x10° T2 N/mm?

We know that according to maximum principal stress theory,
0., =0

Minimum principal stress,

and maximum shear stress,

a
1

“ ot ..(Taking ES. = 1)

81.5 + y/ 6642.5 +1.65x10° T2 = 200
6642.5+1.65 + 10° T 2 = (200 - 81.5) = 14 042
_ 14042 - 66425

1.65%x107°
or T = 2118 x 103 N-mm = 2118 N-m Ans.

2. According to maximum shear stress theory

We know that according to maximum shear stress theory,
c
oo
Thax = Tyt_ 2

- /66425 +1.65x10°T2 = %0 =100

6642.5 + 1.65 x 107° T 2= (100)? = 10 000
10 000 — 6642.5

T2 = ———— "% _ 2035 x 10°
1.65x107°

o T =1426 x 103 N-mm = 1426 N-m Ans.
3. According to maximum distortion strain energy theory
We know that according to maximum distortion strain energy theory
(64)*+(6,)* -0y X0, = (Gyt)z

T? = 4485 x 10°

[81.5 + \/6642.5 +1.65%x107°T? ]2 + [81.5 - \/6642.5 +1.65%x107° T2 ]z

- [81.5 + /66425 +1.65x10°T? ] [81.5 ~ \/6642.5 + 1,65 x10° T2 ] = (200)

2[(81.5)% + 66425+ 1.65x 102 T2 | - [ (81.5)2 - 6642.5 + 1.65x 10° T2 | = (200)?
(81.5)2 + 3 x 6642.5 + 3 x 1.65 x 10° T 2 = (200)?
26 570 +4.95 x 10 T 2 = 40 000

_ 40000 - 26 570

4.95%107°
T =1647 x 103 N-mm = 1647 N-m Ans.

T? =2713x10°

Contents

Top



Contents

160 = A Textbook of Machine Design

5.15 Eccentric Loading - Direct and Bending Stresses Combined

An external load, whose line of action is parallel but does not coincide with the centroidal axis
of the machine component, is known as an eccentric load. The distance between the centroidal axis
of the machine component and the eccentric load is called eccentricity and is generally denoted by e.
The examples of eccentric loading, from the subject point of view, are C-clamps, punching machines,
brackets, offset connecting links etc.

Y P Y P Y Y P Y P
_>|e¢<— Pl' e|' ¢P]:P —»‘er— ﬂer—
T I
: !
| T : | P,=P P,
| | | | |
| | | | |
! | ! | |
T T | T
Y Y Y Y Y
C | A I I . ,
| | |P1:P LN P10,
P P P rp
11t Py L ¢ . _\4 1 13 1
Nl A 2+ N
| Py=p | | H
D I B I [ — b Ve e
_L > Tensile
i Tensile
o= 0,
or
b
Compressive < _¥_ i Op+ G,
Direct compressive _ Compressive _L
stress diagram. Bending stress
diagram. Combined direct and
bending stress diagram.
(@) (b) (c) (d) (e)

Fig. 5.19. Eccentric loading.

Consider a short prismatic bar subjected to a compressive load P acting at an eccentricity of e as
shown in Fig. 5.19 (a).

Letus introduce two forces P, and P, along the centre line or neutral axis equal in magnitude to
P, without altering the equilibrium of the bar as shown in Fig. 5.19 (b). A little consideration will
show that the force P, will induce a direct compressive stress over the entire cross-section of the bar,
as shown in Fig. 5.19 (c).

The magnitude of this direct compressive stress is given by

R P
o, = Xl or a where A is the cross-sectional area of the bar.

The forces P, and P, will form a couple equal to P x e which will cause bending stress. This
bending stress is compressive at the edge AB and tensile at the edge CD, as shown in Fig. 5.19 (d).
The magnitude of bending stress at the edge AB is given by

_P.e.y, .
oy, = 0 (compressive)
and bending stress at the edge CD,
P.e.
o, = fyt (tensile)
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where y. andy, = Distances of the extreme fibres on the compressive and tensile sides,
from the neutral axis respectively, and
I = Second moment of area of the section about the neutral axis i.e.
Y-axis.
According to the principle of superposition, the maximum or the resultant compressive stress at

the edge AB,
P.ey P =M P
ST AT Z A%

and the maximum or resultant tensile stress at the edge CD,

_Pey P M P_
%= T A zZ A b»%

The resultant compressive and tensile stress diagram is shown in Fig. 5.19 (e).

Fuel injector Exhaust

J *Turbines

~ Turbine shaft

Combustion chamber

Fuel line

Compressor

In a gas-turbine system, a compressor forces air info a combustion chamber. There, it mixes with fuel.
The mixture is ignited by a spark. Hot gases are produced when the fuel burns. They expand and drive
a series of fan blades called a turbine.
Note : This picture is given as additional information and is not a direct example of the current chapter.
) ) ) Y Load
Notes: 1. When the member is subjected to a tensile load, then the _>| e |‘_ point
above equations may be used by interchanging the subscripts ¢ and t. Y

2. Whenthe direct stress o, is greater than or equal to bending ! l/
stress o, then the compressive stress shall be present all over the —
cross-section.

3. When the direct stress 6, is less than the bending stress o,
then the tensile stress will occur in the left hand portion of the cross-
section and compressive stress on the right hand portion of the cross- l‘_ y ™
section. In Fig. 5.19, the stress diagrams are drawn by taking o, less |
than o, !

In case the eccentric load acts with eccentricity about two axes,
as shown in Fig. 5.20, then the total stress at the extreme fibre Fig. 5.20. Eccentric load with

eccentricity about two axes.

|

|
X_—_—_|—_—_‘

|

EiP.ex.xiP-ey-y

A IXX IYY

| |
*  We know that bending moment, M = P.e and section modulus, Z = v = Yo OF ¥,
C

Bending stress, 5, =M/ Z
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Example 5.19. A rectangular strut is 150 mm wide and 120 mm thick. It carries a load of 180
kN at an eccentricity of 10 mm in a plane bisecting the thickness as shown in Fig. 5.21. Find the
maximum and minimum intensities of stress in the section.

Solution. Given : b =150 mm; d = 120 mm; P = 180 kN

450 x 10% mm3
Bendingmoment, M = Pe =180 x 103 x 10

180 kN
=180 x 10°N ;e =10 mm 10 mm
We know that cross-sectional area of the strut, _;!
A =b.d =150 x 120 :
=18 x 10° mm? |
. Direct compressive stress, |
P 180x10° |
0 =—=——+
° A 18x10° |
=10 N/mm?2 = 10 MPa |
Section modulus for the strut, Y
150
Sl _d.b*a2 _d.p? g omm B
Ty b/2 6 ! ¥
120 (150)? | 120 mm
[
|

=18x 106 N-mm 114 MPa
_ _ M _18x10°
Bending stress, 6, = 7 150x10° Fig. 5.21

= 4 N/mm? = 4 MPa
Since o is greater than o, therefore the entire cross-section of the strut will be subjected to
compressive stress. The maximum intensity of compressive stress will be at the edge AB and
minimum at the edge CD. 20 kN
. Maximum intensity of compressive stress at the edge AB {\@
L—|~— 500 —>
Lo A
a
Example 5.20. A hollow circular column of external diameter | | /
250 mm and internal diameter 200 mm, carries a projecting bracket Loy
on which a load of 20 kN rests, as shown in Fig. 5.22. The centre of @J\L
the load from the centre of the column is 500 mm. Find the stresses <200
at the sides of the column. le 750 >
Solution. Given : D = 250 mm; d = 200 mm;

P=20kN=20x 103N ; e =500 mm
We know that cross-sectional area of column,

=¢,+0,=10+4=14 MPaAns. !
and minimum intensity of compressive stress at the edge CD |
|
|

=06,-06,=10-4=6 MPa Ans.

T
A= — (D? - d?
7 ( d?) ,
TE .
= 7 [(250)% - (200)7] 0.91 MPa Tensﬂe*
Lreram e
.. Direct compressive stress, Compresiive T
P 20x10° , TP
6 = —=—"""=1.13 N/mm All dimensions in mm.
° A 17674 _
=1.13 MPa Fig. 5.22
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Section modulus for the column,
T 4 b
| el ] o [(250)* - (200)*]

7 =_
y  DI2 250/2
=905.8 x 10° mm?®
Bending moment, Positioning
M =Pe gears Transmission
=20 x 103 x 500 Turbine head
=10 x 10 N-mm - \f‘&_‘
. H ontro! e
. Bending stress, Jectionic l \ Drive shaft
6 adjust posm o
M _ 10x10 of wind turbine

% T Z  905.8x10° head
Internal ladder:
11.04 N/mm? allow access to

11.04 MPa wind turbine

Since o is less than o, therefore right head
hand side of the column will be subjected to
compressive stress and the left hand side of the
column will be subjected to tensile stress.

i Vents for cooling
air

]

Turbine blade
. Maximum compressive stress,

o, =0,+0,=11.04+1.13 Wind turbine.

= 12.17 MPa Ans. Note : This picture is given as additional information and
and maximum tensile stress, is not a direct example of the current chapter.
0, =0,-0,=11.04-1.13=9.91 MPa Ans.

Example 5.21. A masonry pier of width 4 m and thickness 3 m, supports a load of 30 kN as
shown in Fig. 5.23. Find the stresses developed at each corner of the pier.

Solution. Given:b=4m;d=3m;P=30kN;eX=O.5m;ey=1m
We know that cross-sectional area of the pier,
A=bxd=4x3=12m?

i Load point
Moment of inertia of the pier about X-axis, C Y /A P
_b.d® 4x3? 4 e Tmay _f —f
IXX - = =9m 3m x
12 12 IS 1
and moment of inertia of the pier about Y-axis, I _|_ _ 05m Lx _i
d.b® 3x43 . ' i)
L= - —16m |
vwooo12 12 ’
Distance between X-axis and the corners A and B, |
Xx=3/2=15m D v B
< |
Distance between Y-axis and the corners A and C, 4m _ o
We know that stress at corner A,
P P.e.x P.ejy
6, =1 + .. [~* AtA, both x and y are +ve]
A IXX IYY
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Q_‘_ 30x05x%x1.5 + 30x1x2

12 9 16
=25+25+3.75=8.75 kN/m? Ans.

Similarly stress at corner B,

P P.e.x P.ey

o, = + .. [ AtB, xis+veandy is-ve]
B A Ixx Iyy

_ £+30x0.5x1.5_30x1x2

Y 9 16

=25+ 25-3.75=1.25 KN/m? Ans.
Stress at corner C,
P P.e.x P.ey

... [AtC, x is—ve and y is +ve]

¢ A IXX IYY
_ 30 30><O.5><1.5+30><1><2
T 12 9 16

=25-25+3.75=23.75 kN/m? Ans.
and stress at corner D,
P P.e.x P.ey

Op = &~ - ... [At D, both x and y are — ve]
A Ixx vy
_ 30 30x05x15 30x1x2
T 12 9 16

2.5-2.5-3.75=-3.75 kN/m? = 3.75 kN/m? (tensile) Ans.

Example 5.22. A mild steel link, as shown in Fig. 5.24 by full lines, transmits a pull of 80 kN.
Find the dimensions b and t if b = 3t.
Assume the permissible tensile stress as P —r T T
70 MPa. If the original link is replaced 4
by an unsymmetrical one, as shown by

/ | bl b \
et : / | r \
dotted lines in Fig. 5.24, having the same 2 i
thickness t, find the depth b;, using the P - - P
same permissible stress as before. "I ’ F_ T

Solution. Given : P = 80 kN

=80 x 10° N ; 6,= 70 MPa = 70 N/mm? Hlg ez
When the link is in the position shown by full lines in Fig. 5.24, the area of cross-section,
A=bxt=3txt=3t2 (o b=3t)

We know that tensile load (P),
80 x 10°® =6, x A=70 x 3t% = 210 t?
. t2 =80 x 10%/ 210 =381 or t=19.5say 20 mm Ans.
and b=3t=3x20=60mmAns.

When the link is in the position shown by dotted lines, it will be subjected to direct stress as well
as bending stress. We know that area of cross-section,

A =b xt

Top
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Direct tensile stress,

_P__P
% 7 A bt
. M _P.e_6P.e t (b))?
and bending stress, o, =777 1 (b)? ez = 5
.~ Total stress due to eccentric loading
6P.e P P (6e
=0, +0,= >+ = +1
t (b)? bxt t.by b,
Since the permissible tensile stress is the same as 70 N/mm?, therefore
80 x10% (6 x b, 16 x10° ( . blj
— +1|= ...| - Eccentricity, e = —
20b;, (b x2 b, 2

: b, =16 x 103/ 70 = 228.6 say 230 mm Ans.

Example 5.23. A cast-iron link, as shown in Fig. 5.25, is to carry a load of 20 kN. If the tensile
and compressive stresses in the link are not to exceed 25 MPa and 80 MPa respectively, obtain the
dimensions of the cross-section of the link at the middle of its length.

2a

—{ 3}

20 kN - ij—a— 20 kN

: o] F
Fig. 5.25
Solution. Given : P=20kN =20x 103N ; ; O(max)
=80 N/mm?2

=25 MPa = 25 N/mm?; oc(max) =80 MPa
2a

Since the link is subjected to eccentric loading, therefore there —»| 3 |<—Y—>| 3 |<—
will be direct tensile stress as well as bending stress. The bending
stress at the bottom of the link is tensile and in the upper portion is 184
compressive. _L
We know that cross-sectional area of the link, N *— A
2a ¢ y=12a
A =3axa+2x — x2a Y
3 t
= 5.67 a> mm?
- Direct tensile stress, Fig. 5.26
P 20x10° 3530 -
6, = —=———F =— N/mm?
° A b567a a

Now let us find the position of centre of gravity (or neutral axis) in order to find the bending

stresses.
Let } = Distance of neutral axis (N.A.) from the bottom of the link as shown
in Fig. 5.26.
2
B 3a2x 2+ 2x 2 2a
y = 2 > 3 =1l2amm
5.67 a
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Moment of inertia about N.A.,

2
£ ax(2a) 432
5 (2a - 1.2a)°

3
| = {Sa X8 4 3a2(L2a - O.5a)2} +2 {
2 12

= (0.25 a* + 1.47 a* + 2 (0.44a* + 0.85 a*) = 4.3 a* mm*
Distance of N.A. from the bottom of the link,
y, =y =12amm
Distance of N.A. from the top of the link,
y,=3a-12a=18amm
Eccentricity of the load (i.e. distance of N.A. from the point of application of the load),
e=12a-05a=07amm
We know that bending moment exerted on the section,
M =Pe=20x10%x0.7a=14x 10°a N-mm
. Tensile stress in the bottom of the link,
M M M.y 14x10°axl2a 3907

g, =— = =
t Zt I/yt | 4.33.4 az

and compressive stress in the top of the link,

M M M.y, 14x10°ax18a 5860

%=z, Ty, 1 43a° a2
We know that maximum tensile stress [, ...
3907 5860 9767
25 = G+ G =— 2 .2
a a a
a? =9767/25=390.7 or a=19.76 mm (i)
and maximum compressive stress [cc(max)],
_ _ 5860 3530 _ 2330
80 =0,-0,= a2 - 2 a
a2 =2330/80=29.12 or a=54mm (i)

We shall take the larger of the two values, i.e.
a = 19.76 mm Ans.

Example 5.24. Ahorizontal pull P =5 kN is exerted by the belting on one of the cast iron wall
brackets which carry a factory shafting. At a point 75 mm from the wall, the bracket has a T-section
as shown in Fig. 5.27. Calculate the maximum stresses in the flange and web of the bracket due to the
pull.
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Flange
X%— 60 —| 'S X — 50
o | 27F s i-<— 1

[ 282

»|

| Web j X—’-i

All dimensions in mm.
Fig. 5.27
Solution. Given : Horizontal pull, P =5 kN = 5000 N

Since the section is subjected to eccentric loading, therefore there will be direct tensile stress as
well as bending stress. The bending stress at the flange is tensile and in the web is compressive.

We know that cross-sectional area of the section,

A =60 x 12+ (90 — 12)9 = 720 + 702 = 1422 mm?

. DI . _ P 5000 _ ”_

- Direct tensile stress,c, = AT 3.51 N/mm# = 3.51 MPa

Now let us find the position of neutral axis in order to determine the bending stresses. The
neutral axis passes through the centre of gravity of the section.

Let y = Distance of centre of gravity (i.e. neutral axis) from top of the flange.

B 60x12x%+78x9[12+7—8j
y = =28.2mm
720 + 702
Moment of inertia of the section about N.A.,
3 3
| = {% +720 (28.2 - 6)2} + {% +702 (51 - 28.2)2}

= (8640 + 354 845) + (355 914 + 364 928) = 1 084 327 mm*

T ol -— .
. N,
This picture shows a reconnoissance helicopter of air force. Its dark complexion absorbs light that falls
on its surface. The flat and sharp edges deflect radar waves and they do not return back to the radar.
These factors make it difficult to detect the helicopfter.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Distance of N.A. from the top of the flange,
y, = y=282mm
Distance of N.A. from the bottom of the web,
Y, = 90-282=61.8mm
Distance of N.A. from the point of application of the load (i.e. eccentricity of the load),
e =50+282=782mm
We know that bending moment exerted on the section,
M = P xe=5000x 78.2=391 x 10° N-mm
- Tensile stress in the flange,
M M M.y, 391x10°x28.2

G, = —= = = =10.17 N/mm?
LA VA2 | 1084 327
= 10.17 MPa
and compressive stress in the web,
3
5 =M= M _ M.y _391x10 X61'8=22.28 N/mm?
¢ Z, 1y, | 1084 327

= 22.28 MPa

We know that maximum tensile stress in the flange,

Oymay) = Op TG, =0+ 0, = 10.17 + 3.51 = 13.68 MPa Ans.
and maximum compressive stress in the flange,
Ogmax) = Op— 0o =0~ 0, = 22.28 —3.51 = 18.77 MPa Ans.

Example 5.25. A mild steel bracket as shown in Fig. 5.28, is subjected to a pull of 6000 N
acting at 45° to its horizontal axis. The bracket has a rectangular section whose depth is twice the
thickness. Find the cross-sectional dimensions of the bracket, if the permissible stress in the material
of the bracket is limited to 60 MPa.

Solution. Given : P = 6000 N ; 8 =45°; ¢ =60 MPa=60 N/mm?
Let t = Thickness of the section in mm, and
b = Depth or width of the section =21 ...(Given)

We know that area of cross-section,
A=bxt=2txt=2t2mm?

t x b? _

6 f
t(2t)2 —>| |<_ 75m1n

6

. t3 i % —+ Py 6000 N
= — mm - T - T
6 Y

Horizontal component of the load,
P,, = 6000 cos 45°
= 6000x0.707 e BOmm——>

= 4242N Fig. 5.28

~. Bending moment due to horizontal
component of the load,

and section modulus, Z =

M, = P, x75=4242 x 75 = 318 150 N-mm

Top
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A little consideration will show that
the bending moment due to the horizontal
component of the load induces tensile shaft f '-':—-F
stress on the upper surface of the bracket Generator e
and compressive stress on the lower "
surface of the bracket.

- Maximum bending stress on
the upper surface due to horizontal

component, Curved
blades
_My

bH z Water
318 150 % 6 Schematic of a hydel turbine.
=03 Note : This picture is given as additional information
4t and is not a direct example of the current chapter.

Turbine

Water ==

o

= 4773225 N/mm? (tensile)

Vertical component of the load,
P,, = 6000 sin 45° = 6000 x 0.707 = 4242 N
.~ Direct stress due to vertical component,
R, 4242 2121
2t? t?
Bending moment due to vertical component of the load,
M, = P, x 130 = 4242 x 130 = 551 460 N-mm

This bending moment induces tensile stress on the upper surface and compressive stress on the

lower surface of the bracket.

.. Maximum bending stress on the upper surface due to vertical component,

My 551460x6 827190 2 .
o. = —L= = N/mm* (tensile
bv 7 4 t3 t3 ( )
and total tensile stress on the upper surface of the bracket,

477 225 2121 827190 1304 415 + 2121

— V
o, = 2=
voA

N/mm? (tensile)

°TTe t? t3 t3 t2
Since the permissible stress () is 60 N/mm?, therefore
1304 415 2121 21740 354
—_—+ =60 or +—==1
t3 t2 t3 tz
R t = 28.4 mm Ans. ... (By hit and trial)
and b =2t=2x28.4=56.8mm Ans.

Example 5.26. A C-clamp as shown in Fig. 5.29, carries a load P = 25 kN. The cross-section
of the clamp at X-X is rectangular having width equal to twice thickness. Assuming that the clamp is
made of steel casting with an allowable stress of 100 MPa, find its dimensions. Also determine the
stresses at sections Y-Y and Z-Z.

Solution. Given: P=25kN =25 x 108 N ; Omay) = 100 MPa =100 N/mm?
Dimensions at X-X
Let t = Thickness of the section at X-X in mm, and
b = Width of the section at X-X inmm = 2t ...(Given)

Contents
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We know that cross-sectional area at X-X,
A=bxt=2txt=2t2mm?
.. Direct tensile stress at X-X,

P 25x10°
6, =7 "5
° A 2t
3
_125x10° 2
t3
Bending moment at X-X due to the load P,
M = Pxe=25x10°x 140

= 3.5x 105N-mm
t.b? t(2t)? 4¢3
Section modulus, Z= . = (6) = e mm3 e— 150 mm —
Fig. 5.29

(e b=21)

.. Bending stress at X-X,

6, = — N/mm? (tensile
b Z 4t3 ( )

We know that the maximum tensile stress [G, .1,
12.5x10° | 5.25x10°

M 35x10°x6 525x10°
- - 3

100 = o, +0, =

t2 t3
3
or %+52.5><10 _1=0
t2 £
R t = 38.5 mm Ans. ...(By hit and trial)
and b =2t=2x385=77mm Ans.

Stresses at section Y-Y

Since the cross-section of frame is uniform throughout, therefore cross-sectional area of the
frame at section Y-Y,

A =bsec45° xt =77 x 1.414 x 38.5 = 4192 mm?
Component of the load perpendicular to the section
= P cos 45°=25x% 103 x 0.707=17675N
This component of the load produces uniform tensile stress over the section.
.. Uniform tensile stress over the section,
o =17 675/4192 = 4.2 N/mm? = 4.2 MPa
Component of the load parallel to the section
= Psin45°=25x 103 x 0.707 =17 675 N
This component of the load produces uniform shear stress over the section.
.. Uniform shear stress over the section,
T =17675/4192 = 4.2 N/mm? = 4.2 MPa
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We know that section modulus,
. (b sec 45°)* _ 38,5 (77 x 1.414)
6 6
Bending moment due to load (P) over the section Y-Y,
M = 25x10°% x 140 =3.5x 10 N-mm
*. Bending stress over the section,

M  35x10°
O, = 5 =———5 =46 N/mm?=46 MPa
Z 76x10
Due to bending, maximum tensile stress at the inner corner and the maximum compressive stress
at the outer corner is produced.

.. Maximum tensile stress at the inner corner,
0, = 0,+0,=46+4.2=50.2MPa
and maximum compressive stress at the outer corner,
0, = 6,—-0,=46-42=41.8MPa
Since the shear stress acts at right angles to the tensile and compressive stresses, therefore
maximum principal stress (tensile) on the section Y-Y at the inner corner

G e SRR e

= 25.1 +25.4 =50.5 MPa Ans.
and maximum principal stress (compressive) on section Y-Y at outer corner

- o3 i) 52 S et e

=209 +21.3=42.2 MPa Ans.

=76 x10° mm®

Maximum shear stress = %[\/ ()P +472 ) =1 [/(50.2)7+ 4x (42)? | =25.4 MPa Ans.

Stresses at section Z-Z
We know that bending moment at section Z-Z,
= 25x10% x 40 = 1 x 108 N-mm

t.b? 385 (77)°
6 6
.. Bending stress at section Z-Z,
M _ 1x10° )
O, = 5 =———7 =263 N/mm*=26.3 MPa Ans.
Z 38x10

The bending stress is tensile at the inner edge and compressive at the outer edge. The magnitude
of both these stresses is 26.3 MPa. At the neutral axis, there is only transverse shear stress. The shear
stress at the inner and outer edges will be zero.

We know that *maximum transverse shear stress,

=38 x 103 mm3

and section modulus, Z =

P 25 x10°

=1. =15X—=15Xx—"7—

Thax — 1.5 X Average shear stress b1 77% 385
= 12.65 N/mm? = 12.65 MPa Ans.

*  Refer Art. 5.16
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) Sluice gate Dam Spillway

|

Water from the ~ The flow of Turbinesdrive  Cables carry Excess water
reservoir water makes generator to away the flows over
passes through  the turbine shaft produce electricity for spillway

a gate turn electricity use

General layout of a hydroelectric plant.

Note : This picture is given as additional information and is not a direct example of the current chapter.

5.16 Shear Stresses in Beams

In the previous article, we have assumed that no shear force is acting on the section. But, in
actual practice, when a beam is loaded, the shear force at a section always comes into play along with
the bending moment. It has been observed that the effect of the shear stress, as compared to the
bending stress, is quite negligible and is of not much importance. But, sometimes, the shear stress at
a section is of much importance in the design. It may be noted that the shear stress in a beam is not
uniformly distributed over the cross-section but varies from zero at the outer fibres to a maximum at
the neutral surface as shown in Fig. 5.30 and Fig. 5.31.

NEN

DN

Fig. 5.30. Shear stress in a rectangular beam. Fig. 5.31. Shear stress in a circular beam.

The shear stress at any section acts in a plane at right angle to the plane of the bending stress and
its value is given by

= -
T = mxA.y
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where F = Vertical shear force acting on the section,
I = Moment of inertia of the section about the neutral axis,
b = Width of the section under consideration,
A = Area of the beam above neutral axis, and
y = Distance between the C.G. of the area and the neutral axis.

The following values of maximum shear stress for different cross-section of beams may be noted

1. Forahbeam of rectangular section, as shown in Fig. 5.30, the shear stress at a distance y from
neutral axis is given by

F h2 2] 3F |: b. h3:|
=olT YT h? - 42 =
21 (4 V' )= oy e -4 >
and maximum shear stress,
Tinax = ZSFh ...(Substituting y:%)
w1 _F_F
=15 T(average) ...| © “(average) — Area = bh

The distribution of stress is shown in Fig. 5.30.
2. For a beam of circular section as shown in Fig. 5.31, the shear stress at a distance y from

neutral axis is given by
F(d? 16 F
= (——VZ] (d® - 4y?)

3\ 4 B 3xd?
and the maximum shear stress,
TUnax = % (Substituting y= %)
3x=d?
4 G I
= 3 Haverage) |7 @) Tares — w d2
4

The distribution of stress is shown in Fig. 5.31.
3. Forahbeam of I-section as shown in Fig. 5.32, the maximum shear stress occurs at the neutral
axis and is given by

FlB, , ., b.hz}
= " 1B p2opzy 2
T I.b{S( )t =5

fe—12
|

!

|-<—|\>|m—>

N———

—
Flange—\

Fig. 5.32
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Shear stress at the joint of the web and the flange

= o (=)
and shear stress at the junction of the top of the web and bottom of the flange

_F _B 5, 2
Y X - (H?-h?)

The distribution of stress is shown in Fig. 5.32.

Example 5.27. A beam of I-section 500 mm deep and 200 mm wide has flanges 25 mm
thick and web 15 mm thick, as shown in Fig. 5.33 (a). It carries a shearing force of 400 kN. Find
the maximum intensity of shear stress in the section, assuming the moment of inertia to be
645 x 105 mm*. Also find the shear stress at the joint and at the junction of the top of the web
and bottom of the flange.

Solution. Given : H =500 mm ; B =200 mm; h =500 — 2 x 25 =450 mm ; b = 15 mm;
F =400 kN =400 x 10° N ; | = 645 x 106 mm?

I | )
A
15 = (=
h
N== =2 | 500
Web -
Flange
/
[o |25 _ ¥
200 —| |
(@) (b)

All dimensions in mm.
Fig. 5.33
Maximum intensity of shear stress
We know that maximum intensity of shear stress,
F[B,., .o, b. hz}
=—|=(H"-h%)+
K I.b { ( )+

max 8

N/mm?

3
400 x 10 {200 (5002 — 450%) +

" 645x10°x15L 8
= 64.8 N/mm? = 64.8 MPa Ans.
The maximum intensity of shear stress occurs at neutral axis.

15 x 4502 }

Note :The maximum shear stress may also be obtained by using the following relation :

_F.Ay

Tmax = g

We know that area of the section above neutral axis,

450
A =200 x 25+ Tl x 15 = 8375 mm?
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Distance between the centre of gravity of the area and neutral axis,

< _ 200x25 (225 +12.5) + 225x15x112.5

y =187 mm
8375
400 x10°x 8375 x 187 5
Tnax = B = 64.8 N/mm< = 64.8 MPa Ans.
645x10°x15

Shear stress at the joint of the web and the flange
We know that shear stress at the joint of the web and the flange

400 x 10°

8 x 645 x 10°
= 3.7N/mm2=3.7 MPa Ans.

= 8£I (H2-h?) = [ (500)2 - (450) | N/mm?

Shear stress at the junction of the top of the web and bottom of the flange
We know that shear stress at junction of the top of the web and bottom of the flange

B .2 .2 400x10° 200 2 2 2
= —x— (H?-h?)= 277 x 222 | (500)2 - (450)% | N/mm
8l b( ) 8x645x10° 15 [( )= (4%0) J

= 49 N/mm? = 49 MPa Ans.

E

The stress distribution is shown in Fig. 5.33 (b)

EXERCISES

A steel shaft 50 mm diameter and 500 mm long is subjected to a twisting moment of 1100 N-m, the
total angle of twist being 0.6°. Find the maximum shearing stress developed in the shzaft and modulus
of rigidity. [Ans. 44.8 MPa; 85.6 kN/m?]

A shaft is transmitting 100 kW at 180 r.p.m. If the allowable stress in the material is 60 MPa, find the
suitable diameter for the shaft. The shaft is not to twist more than 1° in a length of 3 metres.
Take C = 80 GPa. [Ans. 105 mm]

Design a suitable diameter for a circular shaft required to transmit 90 kW at 180 r.p.m. The shear
stress in the shaft is not to exceed 70 MPa and the maximum torque exceeds the mean by 40%. Also
find the angle of twist in a length of 2 metres. Take C = 90 GPa. [Ans. 80 mm; 2.116°]

Design a hollow shaft required to transmit 11.2 MW at a speed of 300 r.p.m. The maximum shear
stress allowed in the shaft is 80 MPa and the ratio of the inner diameter to outer diameter is 3/4.
[Ans. 240 mm; 320 mm]

Compare the weights of equal lengths of hollow shaft and solid shaft to transmit a given torque for the
same maximum shear stress. The material for both the shafts is same and inside diameter is 2/3 of
outside diameter in case of hollow shaft. [Ans. 0.56]

A spindle as shown in Fig. 5.34, is a part of an industrial brake and is loaded as shown. Each load P
is equal to 4 kN and is applied at the mid point of its bearing. Find the diameter of the spindle, if the

maximum bending stress is 120 MPa. [Ans. 22 mm]
—> 25 mm |e——— 125 mm > 25 mm <—
y P P
I I
Fig. 5.34

A cast iron pulley transmits 20 kW at 300 r.p.m. The diameter of the pulley is 550 mm and has four
straight arms of elliptical cross-section in which the major axis is twice the minor axis. Find the
dimensions of the arm, if the allowable bending stress is 15 MPa. [Ans. 60 mm; 30 mm]

Contents
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8. Ashaft is supported in bearings, the distance between their centres being 1 metre. It carries a pulley in
the centre and it weighs 1 kN. Find the diameter of the shaft, if the permissible bending stress for the
shaft material is 40 MPa. [Ans. 40 mm]

9. A punch press, used for stamping sheet metal, has a punching capacity of 50 kN. The section of the
frame is as shown in Fig. 5.35. Find the resultant stress at the inner and outer fibre of the section.
[Ans. 28.3 MPa (tensile); 17.7 MPa (compressive)]

800 >
A
Section at X-X T
Section at A-A
All dimensions in mm. All dimensions in mm.
Fig. 5.35 Fig. 5.36

10. A crane hook has a trapezoidal section at A-A as shown in Fig. 5.36. Find the maximum stress at

points P and Q. [Ans. 118 MPa (tensile); 62 MPa (compressive)]

11.  Arrotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial load of 5000
N, a steady torque of 50 N-m and maximum bending moment of 75 N-m. Calculate the factor of safety
available based on 1. Maximum normal stress theory; and 2. Maximum shear stress theory.

Assume yield strength as 400 MPa for plain carbon steel. If all other data remaining same, what
maximum yield strength of shaft material would be necessary using factor of safety of 1.686 and
maximum distortion energy theory of failure. Comment on the result you get.

[Ans. 1.752; 400 MPa]

12. A hand cranking lever, as shown in Fig. 5.37, is used to start a truck engine by applying a force
F =400 N. The material of the cranking lever is 30C8 for which yield strength = 320 MPa; Ultimate
tensile strength =500 MPa ; Young’s modulus = 205 GPa ; Modulus of rigidity = 84 GPaand poisson’s

ratio = 0.3.
| F
A
I
|
X I200mm
o J) o
|
e B
R S
X

Fig. 5.37
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Assuming factor of safety to be 4 based on yield strength, design the diameter ‘d” of the lever at section
X-X near the guide bush using : 1. Maximum distortion energy theory; and 2. Maximum shear stress
theory. [Ans. 28.2 mm; 28.34 mm]
An offset bar is loaded as shown in Fig. 5.38. The weight of the bar may be neglected. Find the
maximum offset (i.e., the dimension x) if allowable stress in tension is limited to 70 MPa.

[Ans. 418 mm]

10 kN

All dimensions in mm. All dimensions in mm.

Fig. 5.38 Fig. 5.39

A crane hook made from a 50 mm diameter bar is shown in Fig. 5.39. Find the maximum tensile stress
and specify its location. [Ans. 35.72 MPa at A]
An overhang crank, as shown in Fig. 5.40 carries a tangential load of 10 kN at the centre of the
crankpin. Find the maximum principal stress and the maximum shear stress at the centre of the crank-

shaft bearing. [Ans. 29.45 MPa; 18.6 MPa]
_:25
4.5 kN
_ L 1 10 kN
T 50,
125 - F
100 77 31
00 777t
KT Soo ¥
- —A
40 | ' 7
<->|2ﬂ<— |<—1()()—>|
All dimensions in mm. All dimensions in mm.
Fig. 5.40 Fig. 5.41
A steel bracket is subjected to a load of 4.5 kN, as shown in Fig. 5.41. Determine the required
thickness of the section at A-A in order to limit the tensile stress to 70 MPa. [Ans. 9 mm]

Contents
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17. A wall bracket, as shown in Fig. 5.42, is subjected to a pull of P =5 kN, at 60° to the vertical. The
cross-section of bracket is rectangular having b = 3t . Determine the dimensions b and t if the stress
in the material of the bracket is limited to 28 MPa. [Ans. 75 mm; 25 mm]

120

A

v,
—>| t |<—
‘
% \
All dimensions in mm. All dimensions in mm.
Fig. 5.42 Fig. 5.43

18. Abracket, as shown in Fig. 5.43, is bolted to the framework of a machine which carries aload P. The
cross-section at 40 mm from the fixed end is rectangular with dimensions, 60 mm x 30 mm. If the
maximum stress is limited to 70 MPa, find the value of P.

[Ans. 3000 N]

19. A T-section of a beam, as shown in Fig. 5.44, is subjected to a vertical shear force of 100 kN. Calcu-
late the shear stress at the neutral axis and at the junction of the web and the
flange. The moment of inertia at the neutral axis is 113.4 x 10% mm?,

[Ans. 11.64 MPa; 11 MPa; 2.76 MPa]

e—200—+ y le—60—~ |

B Flange 50 15
[ T T

—> €—15

250 ~— Web 120

, 1
: — 50 < 15

— 60— |
All dimensions in mm. All dimensions in mm.
Fig. 5.44 Fig. 5.45

20. A beam of channel section, as shown in Fig. 5.45, is subjected to a vertical shear force of 50 kN. Find
the ratio of maximum and mean shear stresses. Also draw the distribution of shear stresses.

[Ans. 2.22]
QUESTIONS

1. Derive a relation for the shear stress developed in a shaft, when it is subjected to torsion.
2. State the assumptions made in deriving a bending formula.
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Prove the relation: M/l = c/y = E/IR

where M = Bending moment; | = Moment of inertia; ¢ = Bending stress in a fibre at a distance y from
the neutral axis; E = Young’s modulus; and R = Radius of curvature.

Write the relations used for maximum stress when a machine member is subjected to tensile or com-
pressive stresses along with shearing stresses.

Write short note on maximum shear stress theory verses maximum strain energy theory.
Distinguish clearly between direct stress and bending stress.
What is meant by eccentric loading and eccentricity?

Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column,
when it is subjected to

(a) an eccentric load about one axis, and (b) an eccentric load about two axes.

OBJECTIVE TYPE QUESTIONS

When a machine member is subjected to torsion, the torsional shear stress set up in the member is
(a) zero at both the centroidal axis and outer surface of the member

(b) Maximum at both the centroidal axis and outer surface of the member

(c) zero at the centroidal axis and maximum at the outer surface of the member

(d) none of the above

The torsional shear stress on any cross-section normal to the axis is ......... the distance from the centre
of the axis.

(a) directly proportional to (b) inversely proportional to

The neutral axis of a beam is subjected to

(a) zero stress (b) maximum tensile stress

(c) maximum compressive stress (d) maximum shear stress

At the neutral axis of a beam,

(a) the layers are subjected to maximum bending stress

(b) the layers are subjected to tension (c) the layers are subjected to compression
(d) the layers do not undergo any strain

The bending stress in a curved beam is

(a) zero at the centroidal axis (b) zero at the point other than centroidal axis
(c) maximum at the neutral axis (d) none of the above

The maximum bending stress, in a curved beam having symmetrical section, always occur, at the
(a) centroidal axis (b) neutral axis

(c) inside fibre (d) outside fibre

If d = diameter of solid shaft and t = permissible stress in shear for the shaft material, then torsional
strength of shaft is written as

T
(a) §d4r (b) dlog, ©
T 3 T3
=4 —d
© %" @ 39°
If d; and d are the inner and outer diameters of a hollow shaft, then its polar moment of inertia is
T 4 4 T 3 3
(&) 55 (0)~(@)"] (0) 55 (@)~ (@)°]
T T
© 7 (d)*~(@)*] (@) 55 @ d)
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9.

10.

11.

12.

13.

14.

15.

Two shafts under pure torsion are of identical length and identical weight and are made of same
material. The shaft A is solid and the shaft B is hollow. We can say that

(a) shaft B is better than shaft A

(b) shaft A is better than shaft B

(c) both the shafts are equally good

A solid shaft transmits a torque T. The allowable shear stress is t. The diameter of the shaft is

316T 332T

(a) T (b) T
64T 16T

3 —— 3 —

© I @ 3=

When a machine member is subjected to a tensile stress (s,) due to direct load or bending and a shear
stress (t) due to torsion, then the maximum shear stress induced in the member will be

@ i[Jop?+ae] 0 1[Je)?-a+]
© [Jo2+as?] @ (o)2+4v

Rankine’s theory is used for

(a) brittle materials (b) ductile materials
(c) elastic materials (d) plastic materials
Guest’s theory is used for
(a) brittle materials (b) ductile materials
(c) elastic materials (d) plastic materials
At the neutral axis of a beam, the shear stress is
(a) zero (b) maximum
(¢) minimum
The maximum shear stress developed in a beam of rectangular section is ........ the average shear
stress.
(a) equal to (b) %times
(c) 1.5times
ANSWERS
1. (b) 2. (a) 3. (@ 4. (d) 5. (b)
6. (c) 7. (c) 8. (a) 9. (a) 10. (a)
11. (a) 12. (a) 13. (b) 14. (b) 15. (c)
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Variable Stresses In
Machine Parts

A W N—

10.
. Theoretical or Form Stress

12,
14.

15.

16.

17.
18.

19.
20.
2

. Relation

. Infroduction.

. Completely Reversed or
Cyclic Stresses.

. Fatigue and Endurance
Limif.

. Effect of Loading on

Endurance Limit—Load
Facftor.

. Effect of Surface Finish on

Endurance Limit—Surface
Finish Factor.

. Effect of Size on Endurance

Limit—Size Factor.
Between
Endurance Limit and
Ultimate Tensile Strength.

. Factor of Safety for Fatigue

Loading.
Stress Concentration.

Concentration Factor.
Stress Concentration due to
Holes and Notches.
Factors to be Considered
while Designing Machine
Parts to Avoid Fatigue
Failure.

Stress Concentration
Factor for Viarious Machine
Members.

Fatigue Stress
Concentration Factor.
Notch Sensitivity.
Combined Steady and
Variable Stresses.

Gerber Method  for
Combination of Stresses.
Goodman Method for
Combination of Stresses.
Soderberg Method for
Combination of Stresses.

6.1 Introduction

We have discussed, in the previous chapter, the
stresses due to static loading only. But only a few machine
parts are subjected to static loading. Since many of the
machine parts (such as axles, shafts, crankshafts, connecting
rods, springs, pinion teeth etc.) are subjected to variable or
alternating loads (also known as fluctuating or fatigue
loads), therefore we shall discuss, in this chapter, the
variable or alternating stresses.

6.2 Completely Reversed or Cyclic Stresses

Consider a rotating beam of circular cross-section
and carrying a load W, as shown in Fig. 6.1. This load
induces stresses in the beam which are cyclic in nature. A
little consideration will show that the upper fibres of the
beam (i.e. at point A) are under compressive stress and the
lower fibres (i.e. at point B) are under tensile stress. After
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