
Computer Aided Design
Prof. Dr. Anoop Chawla

Department of Mechanical Engineering
Indian Institute of Technology, Delhi

Lecture No. # 06
Windowing and Clipping

Today we will talking of windowing and clipping.

(Refer Slide Time: 00:01:18 min)

If you are modeling any object and the coordinates can start from - ∞ to + ∞ . In this infinite
range, in these coordinates which are normally referred to as the world coordinate system. Out of
this infinite range we will normally take a finite portion of this range. Let’s say starting from this
value which, we will call as Xmin and going up to Xmax and in the y direction from Ymin to Ymax.
If, we take this finite portion of this infinite world, we will normally like to map this finite
portion on to the screen coordinates. So if this is a size of a screen let’s say this being a 0 0 and
this being the maximum in terms of x and y. We will normally like this window to be mapped
down to a finite portion of this screen maybe we will take the full screen or maybe we can even
take a portion of the screen. What we would like to do is this portion of the world, we will to
map on to this portion of the screen. Okay. So, this is referred to as the screen coordinate system.

In this screen coordinate system the x and the y values will again range from let’s say if you call
this as the x viewing minimum and this is the x viewing maximum. Similarly this is the y
viewing minimum. Sorry, this will be the y viewing maximum and this will be the y viewing
minimum. Now this finite portion is referred to as the window, this is the window out of the
infinite world. A window is thus a finite portion of the infinite world. This portion is referred to
as the viewport. This is a part of the complete screen on which, this window is to be displayed.

1

So, if we have any objects inside this window, you will like this object to be displayed here like
this. Similarly if we have a line here, we like that line to be displayed here. When this line is
displayed here, its size as well its coordinates they will be very different from the size and the
coordinates over here. These coordinates are what are termed as the world coordinates system,
these coordinates will be in the screen coordinate system. Typically let’s say if you have a screen
has a resolution of 1024*1024 and these coordinates will be in this range between 0 and 1023.
This xy maximum would then be 1023, 1023. So these coordinates will be in this range but these
coordinates can be in minus infinity to plus infinity and if they are within this window, they will
be in the range of between Ymin and Ymax and Xmin and Xmax. How do we transform the
coordinates of let’s say the coordinates of this point on to this point? We have some
transformations, we will go into the transformations later on.

Today what we will see is and let’s say in this window, if we have a line which is going like this
or if you have a line which is outside this window. We need to know that this line is outside the
window so, that we don’t draw it over here. This line should not be drawn on this because this
viewport is supposed to draw only those lines or those entities which are inside this window. So
if you have a line like this that should not be drawn and if we have a line like this, this line
should only be drawn partially like this. The rest of the line should not be drawn. So we will say
that this line should be clipped along this edge that means whatever is outside this edge, outside
this window that should not be drawn. Is that okay? So that is what we mean by clipping.
Whatever is inside that should be drawn completely, whatever is outside the window that should
not be drawn, and whatever is partially inside and partially outside that should be cut along the
edges. If you have a circle like this, only this part of the arc should be drawn. If you have a
triangle like this, only this part of the triangle should be drawn. We do not want to draw anything
outside the viewport obviously. So, we will just see how this clipping can be done.

(Refer Slide Time: 00:08:10 min)

If this is the window, if these are the four boundaries of this window what we have to ensure? An
edge like this should get clipped at these two intersection points and edge like this should not be

2

drawn at all. An edge like this should be clipped here. Only a portion inside that should be
displayed. And how do we do that? Let’s say this is the one end point, this is the second end
point. How do we clip it along the intersection point? We will need to find the intersection of this
line with the line x equal to Xmin. Similarly we will need to find the intersection of the line P1 P2

with the line y equal to Ymax. For this line let’s say this is P3 and this is P4, for the line P3 P4 you
will have to find out the intersection with the line x = Xmin and x = Xmax. We have to find all these
intersections and is very important that all this to be done as efficiently as possible. Efficiency is
of prime concern because this clipping is done very frequently and whenever this clipping is
done typically will have a number of entities in the world. So we like to do it as efficiently as
possible so that the clipping should be done fast. Speed is of prime concern. One way of
increasing the efficiency is that if you can know for sure that some lines are outside, let’s say if
we have a line like this, if a line is outside this window I should not try to find out the
intersection of this line with each of the four boundaries.

Let’s say for a line like this AB, if I try to find the intersection AB with either of these lines Xmin,
Xmax, Ymin and so on. If you find any of these intersections, this exercise is going to be wasteful
because this line is totally outside and wherever the intersections like, irrespective of that the line
is not going to be display. So the first thing that we normally do is we try to see if a particular
line is totally out of the window. If that line is totally outside the window that is it is either above
the Ymax line or below the Ymin line or to the right of the Xmax line or to the left of the Xmin line. At
least such lines should be removed all together. I should not try to clip them or find the
intersections with the boundaries. So the first thing that we will do is identify invisible lines.

Similarly if a line is completely inside, if the line is completely inside even though I need not
find out the intersections because the line is inside there is no point in finding out the
intersections. I have to draw the complete line anyway. So, I will again try to identify completely
visible lines and only for lines which are partially visible, lines which are partially inside the
window and partially outside we should try to find out the intersection with the edges of the
window. Okay. And then for partially visible lines we will find out the intersection and so on.
For this we will have a different set of steps. How do we identify whether a line is completely
visible or completely invisible? I said one way is that lines which are totally above the Ymax line
will always be totally invisible. How do I check whether a line segment AB is totally above the
Ymax line? I will have to compare the y coordinates of the points A and B.

So, I can say if YA> Ymax and YB > Ymax then the line is invisible. Similarly I can have constraints
for each of the four lines. So if YA < Ymin and YB < Ymin that means the line is somewhat like this,
even then the line will be totally invisible. Instead of checking for constraints like this, checking
such constraints a number of times can become slightly messy, instead of that we use what is
called as the four point code.

3
(Refer Slide Time: 00:15:09 min)

With respect to every line let’s say if you take a point here, if we take a point here, now this point
is to the left of the line Xmin. It is above the line Ymin but below the line Ymax. So, with respect to
every edge, we will give it a one point code. Okay. So for this point if we have 1 2 3 4, since this
point is to the left of the Xmin line we will give it a code of one. If it is above the Ymin line, we will
give it a code of zero. It is below the Ymax line we will give it a code of zero and it is to the left of
the Xmax line we will give it a code of zero. So if any point is to the left of the Xmax line, mind you
the visible portion is also to the left of the Xmax line. If any point is to the left of this Xmax line
corresponding to that we give it a code of zero. If this point was to the right of Xmin line, we will
again give it a code of zero. So with respect to Xmin, Xmax, Ymin and Ymax with respect to each of
them our code will be either 0 or 1. If you are to the left of Xmin, we will give it a code of one. If
you are to the right of Xmin, we will give it a code of zero. If you are to the left of the X max we
will give it a code of zero, if you are to the right we will give it a code of one. If I take Ymin, if I
am below Ymin then I will give it a code of one, if I am above I will give it a code of zero.

Similarly Ymax, if I am below Ymax I will give it a code of zero, if I am above Ymax I will give it a
code of, if it is above Ymax I will it code of one. As a result if a point is inside this region, it will
get a code of 0 0 0 0. Okay. If a point is in this region, the point is below Ymin so, it gets a code of
let’s say this is a Ymax, this is a Ymin, Xmax and Xmin. So if this is a Ymax, if it is below Ymax it gets a
code of 0, if it is below Ymin it gets a code of one. It is to the left of Xmin, Xmin means one and to
the left of Xmax also, so it will get zero. So, this code I am using for the first bit, I am using with
respect to Xmin this I am using with respect to Xmax, this I am using with respect to Ymin and this
with respect to Ymax. If I then if the point is in this region what code will it get? the first bit with
respect to Xmin would be zero, with respect to Xmax will also be zero, with respect to Ymin again
we are on the wrong side so it will be one and this will be zero. If you are here with respect to
Xmax will be one, this will be zero and this should be 0 1 and this would probably be 0 0 1 0. If
you come here then with respect to Ymax, 1 0 0 1 and this would become 1000 and 1010.

4
So, in these 9 regions the point will get a different code. If a point is here it becomes 1 0 0 1, if it
is here it gets 1 0 0 0 and so on. Now if one point is here and a second point is here, both of them
will get the code of 0 0 0 1. If one point is here and the other point is here, this will get a code of
0 1 0 1, this will get a code of 1 0 0 1. Both these points are to the left of Xmin, so the bit
corresponding to Xmin will be one for both of them. So if I take any line segment and out of the
four bits, any one bit is one for both the end points that would mean the line is totally outside the
window. If I take a point here and a point here, in that case I get a, with respect to Ymin both the
points are lying below. So Ymin, so this third bit here and a third bit here both will be one. So if I
take the code for point one and the code for point two and I take the intersection of these codes.
In the intersecting of these codes has a one at any location or the intersection of these codes is
not equal to zero, in that case the line segment will be totally out of the window. Is that okay? So,
if the code for point one intersection in the code for point two is not equal to zero that means line
is invisible, completely invisible. okay

Similarly, if I have a point here and a point here then the code for both of them has to be 0 0 0 0.
So if I say that the code for point one union with the code for point two is equal to zero then the
line is completely visible. If the line is inside then both the endpoints will have a code of 0
therefore the union will be equal to 0. If the line is to one side of either of the 4 edges then the
corresponding bit will be one and therefore the intersection will not be equal to 0 and then the
line will be totally invisible and these bits can easily be set for each point just by comparing them
with the x and the y coordinates of the edges. So by using this four bit code, this is a four bit
code. By using this four bit code we can very easily check whether the line is completely
invisible or whether the line is completely visible.

(Refer Slide Time: 26:00)

Of course there will be some cases like this. If we take this 0 1 0 0 and 0 0 1 0, their intersection
will be equal to 0 but even then the line is completely invisible. In such cases these checks are
not going to result in any decision. We cannot say. We cannot decide on the basis of these checks
that the line is invisible. Only when the intersection is not equal to zero will the line be invisible?

5
Only when the intersection is not equal to zero, we can say confidently that the line is invisible
but if this condition is not satisfied and this condition is also not satisfied then, the line can be
invisible or the line can be partially visible. Whether the line is like this or the line is like this, we
can decide that only by finding out the intersection points. So this four bit code will help us in
reading out those lines which are satisfy either this criteria or this criteria. Any question up to this
point? Then for the other lines for lines like this, for lines like this, how do we go about clipping
these lines? The first is we check for these lines and then start finding out the intersections.

(Refer Slide Time: 00:27:35 min)

So we write it crudely. The first step is find four point codes for P1 and P2. We are trying to clip
the line segment P1 P2 then, find the four point codes for P1 P2 then will check for these
conditions. let’s say condition one and condition two. We will check for these conditions
condition one and condition two. So, I will just right if condition one is satisfied then line is
invisible, neglected. If, condition two is satisfied then line is visible, draw it. Okay. Otherwise,
what will we do? We find out the intersections of P1 P2 with the window border and check which
part is inside and which part is outside.

6
(Refer Slide Time: 00:29:34 min)

We will have to find out the intersection of this edge with all the four edges, all the four edges of
the window. We will get one intersection here, the other intersection here. We will say that these
two intersections are outside this line segment, so we will ignore that. We will find out this
intersection and this intersection and then decide that this line is outside, this line is inside and
this line is outside and we finally display this edge. So in this fourth step, we will have to find
out the intersection with each of the four edges of the window and check as to which part of the
line segment is inside and which part is outside. This is one clipping algorithm for line segments.
Any question about this clipping algorithm? We will just change, modify this clipping algorithm
to increase speed further, how to make it more efficient. Any question about this clipping
algorithm?

(Refer Slide Time: 00:31:16 min)

7
Okay. We will now see a clipping algorithm which is attributed to Sutherland and Cohen.
Sutherland and Cohen are the name of two scientists who developed this algorithm. Now, the
problem with previous algorithms that comes is that when, we have a line like this, we have to
find out the intersection of this line with each of the four edges of the window. We first find out
let’s say this intersection, will then I also have to check whether this intersection is inside the line
segment or not. Since this intersection is outside is really not relevant, only an intersection,
which is inside this line segment is going to be relevant.

Similarly at this point, this intersection is also outside this line segment so that is also not
relevant. In order to take care of all these, what we can do is let’s say this is our clipping edge
and we have a line to be clipped which is a line like this. I call this as the correct side of the
clipping edge, this is my clipping edge and this as the wrong side. Correct side the visible side.
Again please? The correct side is the visible side. The correct side is the visible side and the
wrong side is the wrong side. So if I am considering this as my clipping edge, the right hand side
of the visible edge or the correct side and left hand side is the wrong side.

Now, if I have a line segment whose both the end points are on the correct side then no clipping
has to be performed with respect to the clipping edge as straight forward. Similarly, if I have a
line segment which has both its end points on the wrong side even then no clipping has to be
performed with respect to this edge. Okay. Only when I have one end point on one side and the
other end point on the other side. I have one end point which is P1 which is on the correct side
and P2 which is on the wrong side. Only in that case do I need to perform the clipping. So in the
Sutherland Cohen clipping algorithm, we will perform clipping with respect to each edge
separately.

Let’s say this is my edge number 1, this is my edge number 2, this is edge my number 3 and this
is my edge number 4. I will first perform clipping with respect to edge number 1 and I will check
whether both the end points are on the correct side or both of them are on the wrong side. If both
of them are in the correct side, no clipping has to be performed with respect to edge number one.
If both of them are on the wrong side again no clipping needs to be performed, the line can be
ignored. If one point is on one side, the other is on the other side, I find out the intersection and
the line from the point P1 to this intersection point I, and this is the line we are intersected in. So I
will just write down this algorithm.

8
(Refer Slide Time: 00:35:47 min)

We will repeat with respective to each window edge. The first thing is check whether the line is
completely visible or completely invisible that means both the points are on the correct side or
both the points are on the wrong side. If either of the two conditions is satisfied then we can take
action accordingly and complete and come out of the algorithm. Okay. Otherwise what we will
do C.S. is for correct side. I will just explain what we are doing. What I said is, if P1 is on the
correct side continue else swap P1 and P2. In this case P1 is on the correct side, P2 is on the wrong
side. There is no problem but if my line segment or like this and this was P1 and this was P2. P1 is
on the wrong side and P2 on the correct side. I want to exchange the points P1 and P2, I want to
call this as P1 and this as P2, I want to call the point on the correct side as P1 so that when I find
out the intersection from P1 to the intersection I, that point I will take as the clip segment.

If this is P1 then from P2 to I, I had to take P2 to I. I don’t want to do that, I want to take from P1 to
I. So this is P1 and this is P2, I will swap P1 and P2 and still take the line segment from P1 to I. So
if P1 is on the correct side continue else swap P1 and P2 and then find the intersection of P1 P2 with
the edge, with the clipping edge and clip the line segment P1 P2 to P1 I. Sir why this swapping
necessary? Again please. Why this swapping on the points P1 and P2 necessary? If I don’t swap
but I have to check for is which point is on the correct side and which is on the wrong side. If P 2

is on the correct side then the clipped line will be P2 I and not P1 I. Is that okay?

So I will have to keep track of whether P1 is on the right side or P2 is on the right side. I don’t
want to keep extra track of that. I will just check for that and swap them and make sure that P1 is
on the right side. So after the step two, I know for sure that P1 is on the correct side and then in
step three, I will just find out the intersection of P1 P2 with the clipping edge and the line will get
clipped to P1 I and then I will take this line and repeat it and clip it with respect to the remaining
three edges. So first I have taken, I will repeat this whole process with respect to edge one then
with respect to edge two and so on, I mean edge 3 and edge 4. The first step is check for
completely visible or invisible line. If you expand this step out, if the line is completely invisible

 9
then the clipped line itself is P1 P2. Then this clipped line P1 P2 will be passed on to the next stage
for further clipping.

If the line is completely invisible in that case the line to be passed will be on blank line, no
clipping will be done after that because the line is totally invisible. So the line is completely
invisible where clipping algorithm can end here. If line is completely visible then this clipped
edge has to be passed on to the next clipping edge and the process will have to be repeated for
each of the edges. So this algorithm is called as Sutherland Cohen algorithm, Sutherland Cohen
clipping algorithm and the important thing in this algorithm is first clipping is done with respect
to each edge separately and secondly we are making sure that the point P1 is always on the
correct side so that it becomes easier to say that P1 I will always be the clipped edge, otherwise
we will have to decide whether it is P1 I or P2 I. Any question about this Sutherland Cohen
clipping algorithm? Continuing with clipping further, so far I have been talking of clipping of
line segments only.

(Refer Slide Time: 00:43:51 min)

If instead of a line segment, if we have let’s say this is the clipping window and if you have
curves. If, you have a curve like this, in a curve it has to be clipped then clearly the algorithm
that you are using so far will not be valid for this curve. Even if I take a simple curve, a simple
arc like this even though both the end points of the arc might be inside, a part of my curve can
still be outside. Again same algorithm will not work. The second problem is that if we have
regions or an area to be clipped, an area can be defined by let’s say a polygon. We want this area
to be clipped, we like to clip this to this portion. So if you have a polygon given as a list of
points, a list of vertices, we like to be able to clip it and find out the clipped polygon. So with
respect to curves, the way you look clippings of curves normally will divide this curve into
sequence of small line segments. For display of curves normally approximated as the sequence
of line segments and then once it is approximated as a sequence of line segments, we will do the
clipping of line segments. So the curves they will be reduced to lines and if you have a closed

 10
region bounded by a polygon, if you want to do the clipping for polygons then you will have a
special algorithm for that which we will see in the next class.

How do we carry out a clipping of polygon so that we can get a clipped polygon? Polygon is we
have seen earlier, they are list of vertices P1 P2 till Pn. We want to clip this and get a list of
vertices say Q1 Q2 till Qm ,where this is the clipped polygon and this is the origin, P1 is original
polygon. How do we do this? That we will see in the next class. For curves we will normally
approximate a curve by set of lines and then do the clipping. Any questions on clipping that I
have covered today. Could it be equally do it by building and clipping things? In elementary plot
the pixel construct. Like we could check for every pixel that we have doing in the case of curve
also after splitting into lines most probably line will be consisting of just 3 or 4 pixels getting the
case you want greater resolution. In the best case you want maximum resolution. So your line
would consist of4 or 5 pixel at max.

(Refer Slide Time: 00:47:28 min)

If you look at this window we say that this window is a finite portion of the infinite world. If you
want to do the clipping at the time of displaying the building and pixel, you decide whether the
pixel is inside or outside. Just imagine some curve or some entity which had a very large
distance. you also have to display that and then find out the pixel which will correspond to that.
The idea of clipping is that whichever portion is outside, you will not try to write down the or
you will not try to run a display algorithm for that. If you try to run a display algorithm for that,
you will end up doing lot of wasteful computation. This portion might be let’s say only 1 % of
the complete set of entities you have. If you have a let’s say an entity over here, no point find out
which pixels will correspond to this circle and for each of those pixels saying that those pixels
are outside the window. Then for the each line segment we will have to prove that anyway. So
what we are doing now? What we will do is we will divide this in the line segments. Initially it
can be very close and find out which line segments are inside and which are outside.

If we find out that the complete curve is trivially outside, we will not bother about it. Then the
other thing is for entities like curves I mean for entities of circles, you can easily find out the

bounds of the circle. If those bounds are completely outside the clipping window, we can ignore
that circle, we need not even try to display that or clip that. Our basic idea is that we will try in
clipping we will try to remove as many entities as possible without displaying them because we
know the display is slow. Because in display you are going to compute the detail of each and
every pixel and in fact if you remember in some of the display algorithms, we were using space
which is proportional to the number of pixels. So, if you are talking of an infinite space, we
really can’t do that. We cannot have infinite number of pixels and decide the intensity of each
pixel and so on. We will have to, if we try to compute the pixel corresponding to each of these
points depending on the number of entities that we have can also become very expensive.

So first thing we do is we try to see whether this curve has any portion common with the
window. If it does not we ignore that, if it does only then we try to do the clipping for that and
for that we will approximate it by a set of lines and then do because then we know that some
portion is going to be common. Even let’s say for a curve like this, if we start finding out the set
of pixels that will correspond to the invisible part of the curve, we will have to find out for each
of these pixels we will have find out whether the pixels are inside or outside that is going to be
wasteful. Instead of that we will divide this into a sequence of line segments.

Normally, what we do is we initially start with the very coarse division like this and only if we
feel the need, we will start bringing them closer. If we feel that let’s say from here to here, a part
of the curve is going to be inside then we will sub divide it further and so on. We will be seeing
more of this in detail in the later topics. I think at that point it will become much clearer. Any
other questions? So that’s all for today.

‘

12

