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MODULE I 
 

BASICS OF HEAT TRANSFER 
 
1.1 Difference between heat and temperature 
In describing heat transfer problems, we often make the mistake of interchangeably using the terms 
heat and temperature. Actually, there is a distinct difference between the two. Temperature is a 
measure of the amount of energy possessed by the molecules of a substance. It is a relative measure 
of how hot or cold a substance is and can be used to predict the direction of heat transfer. The usual 
symbol for temperature is T. The scales for measuring temperature in SI units are the Celsius and 
Kelvin temperature scales. On the other hand, heat is energy in transit. The transfer of energy as heat 
occurs at the molecular level as a result of a temperature difference. The usual symbol for heat is Q. 
Common units for measuring heat are the Joule and calorie in the SI system. 
 

What  is Heat Transfer? 
“Energy in transit due to temperature difference.” 

 
 
1.2 Difference between thermodynamics and heat transfer 
Thermodynamics tells us: 

•  how much heat is transferred (δQ) 
•  how much work is done (δW) 
•  final state of the system 

Heat transfer tells us: 
•  how (with what modes) δQ is transferred 
•  at what rate δQ is transferred 
•  temperature distribution inside the body 

 

 
 
 
1.3 Modes of Heat Transfer 

• Conduction:  An energy transfer across a system boundary due to a temperature difference 
by the mechanism of inter-molecular interactions. Conduction needs matter and does not 
require any bulk motion of matter. 
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Conduction rate equation is described by the Fourier Law: 
 

TkAq ∇−=
r   

 
where: q  = heat flow vector, (W) 
 k  = thermal conductivity, a thermodynamic property of the material.  

(W/m K) 
 A = Cross sectional area in direction of heat flow. (m2) 
 ∇T = Gradient of temperature (K/m) 
  = ∂T/∂x i + ∂T/∂y j + ∂T/∂z k    
Note:  Since this is a vector equation, it is often convenient to work with one 
component of the vector.  For example, in the x direction: 
 

qx = - k Ax dT/dx 
 

In circular coordinates it may convenient to work in the radial direction: 
qr = - k Ar dT/dr 

 
• Convection:  An energy transfer across a system boundary due to a temperature difference 

by the combined mechanisms of intermolecular interactions and bulk transport. Convection 
needs fluid matter. 

 
 
 
 
 
 
 
 
 
 
Newton’s Law of Cooling: 

q = h As ∆T 
 

where: q  = heat flow from surface, a scalar, (W) 
 h  = heat transfer coefficient (which is not a thermodynamic property of 

the material, but may depend on geometry of surface, flow 
characteristics, thermodynamic properties of the fluid, etc. (W/m2 K) 

 As = Surface area from which convection is occurring. (m2) 
    ∆T = =− ∞TTS Temperature Difference between surface and coolant. (K) 
 
 
 
 
 
 Convection 

Free or natural convection 
(induced by buoyancy forces) 

Forced convection (induced by 
external means) 

May occur 
with phase 
change 
(boiling, 
condensation) 
 



 

 

q”co n v. q”r a d. 
Ts u r 

Area = A Ts 

Table 1. Typical values of h (W/m2K) 
 

 
 
 
 
 
 
 
 
 
 
 

• Radiation:  Radiation heat transfer involves the transfer of heat by electromagnetic radiation 
that arises due to the temperature of the body.  Radiation does not need matter. 

 
Emissive power of a surface: 

E=σεTs
4 (W/ m2) 

 
where: ε = emissivity, which is a surface property (ε = 1 is black body) 

 σ = Steffan Boltzman constant = 5.67 x 10-8 W/m2 K4. 
 Ts   = Absolute temperature of the surface  (K) 

 
The above equation is derived from Stefan Boltzman law, which describes a gross heat 
emission rather than heat transfer.  The expression for the actual radiation heat transfer rate 
between surfaces having arbitrary orientations can be quite complex, and will be dealt with in 
Module 9.   However, the rate of radiation heat exchange between a small surface and a large 
surrounding is given by the following expression: 

 
 

 
 

 
 
 
 

 
 
 
 

q = ε·σ·A·(Ts
4 – Tsur

4) 
 

where: ε  = Surface Emissivity 
 A= Surface Area 
 Ts  = Absolute temperature of surface.  (K) 
 Tsur  = Absolute temperature of surroundings.(K) 
 

Free convection  gases: 2 - 25 
    liquid:   50 – 100 
 
Forced convection  gases: 25 - 250 
    liquid:  50 - 20,000 
 
Boiling/Condensation  2500 -100,000 



 

 

 
1.4 Thermal Conductivity, k 
 
     As noted previously, thermal conductivity is a thermodynamic property of a material.  From the 
State Postulate given in thermodynamics, it may be recalled that thermodynamic properties of pure 
substances are functions of two independent thermodynamic intensive properties, say temperature 
and pressure.  Thermal conductivity of real gases is largely independent of pressure and may be 
considered a function of temperature alone.  For solids and liquids, properties are largely 
independent of pressure and depend on temperature alone.    

k = k (T) 
 

Table 2 gives the values of thermal conductivity for a variety of materials. 
 
 
 
 
 
 

Material Thermal Conductivity, W/m K 
Copper 401 
Silver 429 
Gold 317 
Aluminum 237 
Steel 60.5 
Limestone 2.15 
Bakelite 1.4 
Water 0.613 
Air 0.0263 
 
It is important that the student gain a basic perspective of the magnitude of thermal conductivity for 
various materials.  The background for this comes from the introductory Chemistry courses.  
Molecules of various materials gain energy through various mechanisms.  Gases exhibit energy 
through the kinetic energy of the molecule.  Energy is gained or lost through collusions of gaseous 
molecules as they travel through the medium.  
 
  
 
 
 
 
 
 
 
 Kinetic energy transfer 

between gaseous molecules. 

Lattice vibration may be transferred 
between molecules as nuclei 

attract/repel each other. 

Table 2. Thermal Conductivities of Selected Materials at Room Temperature.



 

 

 
 
     Solids, being are much more stationary, cannot effectively transfer energy through these same 
mechanisms.  Instead, solids may exhibit energy through vibration or rotation of the nucleus.   
     Another important mechanism in which materials maintain energy is by shifting electrons into 
higher orbital rings.  In the case of electrical conductors the electrons are weakly bonded to the 
molecule and can drift from one molecule to another transporting their energy with them.  This is an 
especially effective transport mechanism, so that materials which are excellent electrical conductors 
are excellent thermal conductors. 
 
 



 Module 1: Short questions 
 

1. What is the driving force for (a) heat transfer (b) electric current flow and (c) fluid 
flow? 

 
2. Which one of the following is not a property of the material ? 

A. thermal conductivity 
B. heat transfer coefficient 
C. emissivity 

 
3.  What is the order of magnitude of thermal conductivity for (a) metals (b) solid 

insulating materials (c) liquids (d) gases?  
 

4. What is the order of magnitude for the convection heat transfer coefficient in free 
convection? Forced convection? Boiling? 

 
5. When may one expect radiation heat transfer to be important? 

 
6. An ideal gas is heated from 50 ºC to 70 ºC (a) at constant volume and (b) at 

constant pressure. For which case do you think the energy required will be 
greater? Why? 

 
7. A person claims that heat cannot be transferred in a vacuum. How do you respond 

to this claim? 
 

8. Discuss the mechanism of thermal conduction in gases, liquids and solids. 
 

9. Name some good conductors of heat; some poor conductors. 
 

10. Show that heat flow lines must be normal to isotherms in conduction heat transfer. 
Will it be true for convection heat transfer? 

 
 



 Module 2: Learning objectives 
 
 

• The primary purpose of this chapter is to improve your understanding of the 
conduction rate equation (Fourier’s law) and to familiarize you with heat 
equation. You should know the origin and implication of Fourier’s law, and you 
should understand the key thermal properties and how they vary for different 
substances. You should also know the physical meaning of each term appearing in 
the heat equation. 

• The student should understand to what form does the heat equation reduce for 
simplified conditions, and what kinds of boundary conditions may be used for its 
solution? 

• The student should learn to evaluate the heat flow through a 1-D, SS system with 
no heat sources for rectangular and cylindrical geometries.  Many other 
geometries exist in nature or in common engineering designs.  The student, using 
a similar development, should be able to develop an appropriate equation to 
describe systems of arbitrary, simple geometry. 

• The student should be comfortable with the use of equivalent thermal circuits and 
with the expressions for the conduction resistances that pertain to each of the 
three common geometric. 

• Composite thermal resistances for 1-D, Steady state heat transfer with no heat 
sources placed in parallel or in series may be evaluated in a manner similar to 
electrical resistances placed in parallel or in series. 

• The student should learn to evaluate the heat flow through a 1-D, SS system with 
no heat sources for rectangular and cylindrical geometries.   

• In short, by the end of the module, the student should have a fundamental 
understanding of the conduction process and its mathematical description. 

 
 



 

 

MODULE 2 
 

ONE DIMENSIONAL STEADY STATE 
HEAT CONDUCTION  

 
2.1 Objectives of conduction analysis: 
 
The primary objective is to determine the temperature field, T(x,y,z,t), in a body (i.e. how 
temperature varies with position within the body)  
T(x,y,z,t) depends on: 
 - Boundary conditions 
 - Initial condition 
 - Material properties (k, cp, ρ) 

- Geometry of the body (shape, size) 
 

Why we need T (x, y, z, t)? 
 - To compute heat flux at any location (using Fourier’s eqn.) 
 - Compute thermal stresses, expansion, deflection due to temp. Etc. 
 - Design insulation thickness 
 - Chip temperature calculation 
 - Heat treatment of metals 
 
 
2.2 General Conduction Equation 
     Recognize that heat transfer involves an energy transfer across a system boundary.  A 
logical place to begin studying such process is from Conservation of Energy (1st Law of 
Thermodynamics) for a closed system: 

dE
dt

Q W
system

in out= −& &  

The sign convention on work is such that negative work out is positive work in. 
dE
dt

Q W
system

in in= +& &  

The work in term could describe an electric current flow across the system boundary and 
through a resistance inside the system.  Alternatively it could describe a shaft turning across 
the system boundary and overcoming friction within the system.  The net effect in either case 
would cause the internal energy of the system to rise.  In heat transfer we generalize all such 
terms as “heat sources”.  

dE
dt

Q Q
system

in gen= +& &  

The energy of the system will in general include internal energy, U, potential energy, ½ mgz, 
or kinetic energy, ½ m 2.  In case of heat transfer problems, the latter two terms could often 
be neglected.  In this case, 

( ) ( )E U m u m c T T V c T Tp ref p ref= = ⋅ = ⋅ ⋅ − = ⋅ ⋅ ⋅ −ρ  



 

 

where Tref is the reference temperature at which the energy of the system is defined as zero.  
When we differentiate the above expression with respect to time, the reference temperature, 
being constant, disappears: 

ρ ⋅ ⋅ ⋅ = +c V
dT
dt

Q Qp
system

in gen
& &  

 
Consider the differential control element shown below.  Heat is assumed to flow through the 
element in the positive directions as shown by the 6 heat vectors. 
 
 

 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
In the equation above we substitute the 6 heat inflows/outflows using the appropriate sign: 

( )ρ ⋅ ⋅ ⋅ ⋅ ⋅ = − + − + − ++ + +c x y z
dT
dt

q q q q q q Qp
system
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Substitute for each of the conduction terms using the Fourier Law: 
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where &&&q is defined as the internal heat generation per unit volume. 
The above equation reduces to: 
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Dividing by the volume (∆x⋅∆y⋅∆z), 
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which is the general conduction equation in three dimensions.  
 
In the case where k is independent of x, y and z then 
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Define the thermodynamic property, α, the thermal diffusivity: 

α
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or, : 
1 2

α
⋅ = ∇ +
dT
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The vector form of this equation is quite compact and is the most general form.  However, we 
often find it convenient to expand the del-squared term in specific coordinate systems: 
 
Cartesian Coordinates 
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Circular Coordinates 
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Spherical Coordinates 
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In each equation the dependent variable, T, is a function of 4 independent variables, (x,y,z,τ); 
(r,θ ,z,τ); (r,φ,θ,τ) and is a 2nd order, partial differential equation.  The solution of such 
equations will normally require a numerical solution.  For the present, we shall simply look at 
the simplifications that can be made to the equations to describe specific problems. 
 

• Steady State:  Steady state solutions imply that the system conditions are not changing 
with time.  Thus 0/ =∂∂ τT . 

• One dimensional:  If heat is flowing in only one coordinate direction, then it follows 
that there is no temperature gradient in the other two directions.  Thus the two partials 
associated with these directions are equal to zero. 

• Two dimensional:  If heat is flowing in only two coordinate directions, then it follows 
that there is no temperature gradient in the third direction.  Thus the partial derivative 
associated with this third direction is equal to zero. 

• No Sources:  If there are no heat sources within the system then the term, 0=
L

q . 
 
Note that the equation is 2nd order in each coordinate direction so that integration will result 
in 2 constants of integration.  To evaluate these constants two additional equations must be 
written for each coordinate direction based on the physical conditions of the problem.  Such 
equations are termed “boundary conditions’. 
 
 
2.3 Boundary and Initial Conditions  
 

• The objective of deriving the heat diffusion equation is to determine the temperature 
distribution within the conducting body.  
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•  We have set up a differential equation, with T as the dependent variable. The solution 
will give us T(x,y,z). Solution depends on boundary conditions (BC) and initial 
conditions (IC).  

•  How many BC’s and IC’s ? 
-  Heat equation is second order in spatial coordinate. Hence, 2 BC’s needed 
for each   coordinate.  

    * 1D problem: 2 BC in x-direction      
* 2D problem: 2 BC in x-direction, 2 in y-direction    
* 3D problem: 2 in x-dir., 2 in y-dir., and 2 in z-dir. 

    -  Heat equation is first order in time. Hence one IC needed.  
 
 
2.4 Heat Diffusion Equation for a One Dimensional System  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Consider the system shown above.  The top, bottom, front and back of the cube are insulated, 
so that heat can be conducted through the cube only in the x direction.  The internal heat 
generation per unit volume is q&  (W/m3). 
 
Consider the heat flow through an arbitrary differential element of the cube.   
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From the 1st Law we write for the element: 

 
(2.1) 

 
         (2.2) 

 
           

 (2.3) 

 
     (2.4) 

 
           

 (2.5) 

            
  

           
 (2.6) 

 
 

If k is a constant, then         
 (2.7) 

 
• For T to rise, LHS must be positive (heat input is positive) 
•  For a fixed heat input, T rises faster for higher α 
•  In this special case, heat flow is 1D. If sides were not insulated, heat flow could be 

2D, 3D. 
 

 
2.5 One Dimensional Steady State Heat Conduction  
 
The plane wall:  
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The differential equation governing heat diffusion is:  0=⎟
⎠
⎞

⎜
⎝
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dx
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dx
d  

 
With constant k, the above equation may be integrated twice to obtain the general solution:  

21)( CxCxT +=  
where C1 and C2 are constants of integration. To obtain the constants of integration, we apply 
the boundary conditions at x = 0 and x = L, in which case 

1,)0( sTT =  and 2,)( sTLT =  

Once the constants of integration are substituted into the general equation, the temperature 
distribution is obtained: 

1,1,2, )()( sss T
L
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The heat flow rate across the wall is given by: 
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Thermal resistance (electrical analogy): 
Physical systems are said to be analogous if that obey the same mathematical equation.  The 
above relations can be put into the form of Ohm’s law: 

V=IRelec 
 
 
 
 
 
Using this terminology it is common to speak of a thermal resistance: 
      thermqRT =∆  

 
 
 
 
 
 
A thermal resistance may also be associated with heat transfer by convection at a surface. 
From Newton’s law of cooling, 

)( ∞−= TThAq s  

the thermal resistance for convection is then  
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Applying thermal resistance concept to the plane wall, the equivalent thermal circuit for the 
plane wall with convection boundary conditions is shown in the figure below 



 

 

 
 
 
 
 
 
 
 
 
 
 
The heat transfer rate may be determined from separate consideration of each element in the 
network. Since qx is constant throughout the network, it follows that 
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In terms of the overall temperature difference 2,1, ∞∞ −TT , and the total thermal resistance Rtot, 
the heat transfer rate may also be expressed as  
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Since the resistance are in series, it follows that 
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Composite walls:  
Thermal Resistances in Series: 
Consider three blocks, A, B and C, as shown.  They are insulated on top, bottom, front and 
back.  Since the energy will flow first through block A and then through blocks B and C, we 
say that these blocks are thermally in a series arrangement. 
 
 
 
 
 
 
 
 
 
 
The steady state heat flow rate through the walls is given by: 
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where 
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U
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=  is the overall heat transfer coefficient. In the above case, U is expressed as 
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Series-parallel arrangement: 
 
 
 
 
 
 
 
 
 
 
 
 
The following assumptions are made with regard to the above thermal resistance model: 

1) Face between B and C is insulated. 
2) Uniform temperature at any face normal to X. 

 
1-D radial conduction through a cylinder:  
One frequently encountered problem is that of heat flow through the walls of a pipe or 
through the insulation placed around a pipe.  Consider the cylinder shown.  The pipe is either 
insulated on the ends or is of sufficient length, L, that heat losses through the ends is 
negligible.  Assume no heat sources within the wall of the tube.  If T1>T2, heat will flow 
outward, radially, from the inside radius, R1, to the outside radius, R2.  The process will be 
described by the Fourier Law. 
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The differential equation governing heat diffusion is:  01
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With constant k, the solution is  
 
The heat flow rate across the wall is given by: 
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Hence, the thermal resistance in this case can be expressed as:  
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Composite cylindrical walls: 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
Critical Insulation Thickness : 
 

 
 
 
 

Insulation thickness : ro-ri 
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Objective :                  decrease q , increase   
Vary ro  ; as ro  increases, first term increases, second term decreases. 
This is a maximum – minimum problem. The point of extrema can be found by setting 
    
 
 
or,  
 
or,      
 
In order to determine if it is a maxima or a minima, we make the second derivative zero: 
 
    at     
 
 
 
 
Minimum q at ro =(k/h) = rcr (critical radius) 
 
 
 
 
 
 
 
 
 
 
 
1-D radial conduction in a sphere: 
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2.6 Summary of Electrical Analogy 
 

System Current Resistance Potential Difference 
Electrical I R ∆V 
Cartesian 
Conduction q 

kA
L  ∆T 

Cylindrical 
Conduction q 

kL
r

r

π2

ln
1

2

 ∆T 

Conduction 
through sphere q k

rr
π4

/1/1 21 −  ∆T 

Convection 
q 

1
h As⋅

 ∆T 

 
 
2.7 One-Dimensional Steady State Conduction with Internal Heat 
Generation 
 
Applications:      current carrying conductor, chemically reacting systems, nuclear reactors. 

Energy generated per unit volume is given by 
V
Eq
&

& =   

Plane wall with heat source: Assumptions: 1D, steady state, constant k, uniform q&  
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Note: From the above expressions, it may be observed that the solution for temperature is no 
longer linear. As an exercise, show that the expression for heat flux is no longer independent 
of x. Hence thermal resistance concept is not correct to use when there is internal heat 
generation.  
 
 
Cylinder with heat source: Assumptions: 1D, steady state, constant k, uniform q&  
 
Start with 1D heat equation in cylindrical co-ordinates 
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Exercise:  Ts may not be known. Instead, T∞ and h may be specified. Eliminate Ts, using T∞ 
and h. 
 
 
 
 

 



 Module 2: Short questions 
 

1. How does transient heat transfer differ from steady state heat transfer?  
 

2. What is meant by the term “one-dimensional” when applied to conduction heat 
transfer? 

 
3.  What is meant by thermal resistance? Under what assumptions can the concept of 

thermal resistance be applied in a straightforward manner?  
 

4. For heat transfer through a single cylindrical shell with convection on the outside, 
there is a value for the shell radius for a nonzero shell thickness at which the heat 
flux is maximized. This value is 

(A) k/h 
(B) h/k 
(C) h/r 
(D) r/h 

 
 

5. The steady temperature profile in a one-dimensional heat transfer across a plane 
slab of thickness L and with uniform heat generation, q& , has one maximum. If the 
slab is cooled by convection at x = 0 and insulated at x = L, the maximum occurs 
at a value of x given by 
 
 
 
 
 
 
 
 
 
 
 

(A) 0 

(B) 
2
L  

(C) 
k
q&  

(D) L 
 
 

6. Consider a cold canned drink left on a dinner table. Would you model the heat 
transfer to the drink as one-, two-, or three-dimensional? Would the heat transfer 
be steady or transient? Also, which coordinate system would you use to analyse 
this heat transfer problem, and where would you place the origin? 

x=0 x=L 

q&

x 



 
7. Consider a round potato being baked in an oven? Would you model the heat 

transfer to the potato as one-, two-, or three-dimensional? Would the heat transfer 
be steady or transient? Also, which coordinate system would you use to analyse 
this heat transfer problem, and where would you place the origin? 

 
8. Consider an egg being cooked in boiling water in a pan? Would you model the 

heat transfer to the egg as one-, two-, or three-dimensional? Would the heat 
transfer be steady or transient? Also, which coordinate system would you use to 
analyse this heat transfer problem, and where would you place the origin? 

 
 
 



 
 
Learning Objectives: 
 

• Students should recognize the fin equation. 
• Students should know the 2 general solutions to the fin 

equation. 
• Students should be able to write boundary conditions for (a) 

very long fins, (b) insulated tip fins, (c) convective tip fins 
and (d) fins with a specified tip temperature. 

• Students should be able to apply the boundary conditions to 
the fin equation and obtain a temperature profile. 

• Students should be able to apply the temperature profile to 
the Fourier Law to obtain a heat flow through the fin. 

• Students should be able to apply the concept of fin efficiency 
to define an equivalent thermal resistance for a fin. 

• Students should be able to incorporate fins into an overall 
electrical network to solve 1-D, SS problems with no sources. 
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MODULE 3 
 

Extended Surface Heat Transfer 
 

3.1 Introduction:  
Convection: Heat transfer between a solid surface and a moving fluid is governed by the 
Newton’s cooling law: q = hA(Ts-T∞), where Ts is the surface temperature and T∞ is the fluid 
temperature.  Therefore, to increase the convective heat transfer, one can  

• Increase the temperature difference (Ts-T∞) between the surface and the fluid.    

•  Increase the convection coefficient h.  This can be accomplished by increasing the 
fluid flow over the surface since h is a function of the flow velocity and the higher the 
velocity, the higher the h.  Example: a cooling fan.  

•  Increase the contact surface area A.  Example: a heat sink with fins. 

Many times, when the first option is not in our control and the second option (i.e. increasing 
h) is already stretched to its limit, we are left with the only alternative of increasing the 
effective surface area by using fins or extended surfaces. Fins are protrusions from the base 
surface into the cooling fluid, so that the extra surface of the protrusions is also in contact 
with the fluid. Most of you have encountered cooling fins on air-cooled engines (motorcycles, 
portable generators, etc.), electronic equipment (CPUs), automobile radiators, air 
conditioning equipment (condensers) and elsewhere. 

 

3.2 Extended surface analysis:  
In this module, consideration will be limited to steady state analysis of rectangular or pin fins 
of constant cross sectional area.  Annular fins or fins involving a tapered cross section may be 
analyzed by similar methods, but will involve solution of more complicated equations which 
result. Numerical methods of integration or computer programs can be used to advantage in 
such cases. 
 

We start with the General Conduction Equation: 

 

k
qT

d
dT

system

&&&
+∇=⋅ 21

τα
      (1) 

 
After making the assumptions of Steady State, One-Dimensional Conduction, this equation 
reduces to the form: 
 

d T
dx

q
k

2

2 0+ =
&&&       (2) 

 
This is a second order, ordinary differential equation and will require 2 boundary conditions 
to evaluate the two constants of integration that will arise. 
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Consider the cooling fin shown below: 
 
 
 
 
 
 
 
 
 
 
The fin is situated on the surface of a hot surface at Ts and surrounded by a coolant at 
temperature T∞, which cools with convective coefficient, h.  The fin has a cross sectional 
area, Ac,  (This is the area through with heat is conducted.) and an overall length, L.   
 
Note that as energy is conducted down the length of the fin, some portion is lost, by 
convection, from the sides.  Thus the heat flow varies along the length of the fin.   
 
We further note that the arrows indicating the direction of heat flow point in both the x and y 
directions.  This is an indication that this is truly a two- or three-dimensional heat flow, 
depending on the geometry of the fin.  However, quite often, it is convenient to analyse a fin 
by examining an equivalent one–dimensional system. The equivalent system will involve the 
introduction of heat sinks (negative heat sources), which remove an amount of energy 
equivalent to what would be lost through the sides by convection. 
 
Consider a differential length of the fin.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Across this segment the heat loss will be h⋅(P⋅∆x)⋅(T-T∞), where P is the perimeter around the 
fin.  The equivalent heat sink would be  ( )&&&q A xc⋅ ⋅ ∆ .  
 

 
 

Ts, 
q 

h, 
T∞ 

Ac 

L

   y 
 
 
 
 

∆x 

h, 
T∞ 

T0, 
q 
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Equating the heat source to the convective loss: 
 

( )
&&&q

h P T T
Ac

=
− ⋅ ⋅ − ∞       (3) 

 
Substitute this value into the General Conduction Equation as simplified for One-Dimension, 
Steady State Conduction with Sources: 
 

( )d T
dx

h P
k A

T T
c

2

2 0−
⋅
⋅

⋅ − =∞      (4) 

  
which is the equation for a fin with a constant cross sectional area. This is the Second Order 
Differential Equation that we will solve for each fin analysis.  Prior to solving, a couple of 
simplifications should be noted.  First, we see that h, P, k and Ac are all independent of x in 
the defined system (They may not be constant if a more general analysis is desired.).  We 
replace this ratio with a constant.  Let 
 

m
h P
k Ac

2 =
⋅
⋅

      (5) 

then: 
 

( )d T
dx

m T T
2

2
2 0− ⋅ − =∞                           (6) 

 
Next we notice that the equation is non-homogeneous (due to the T∞ term).  Recall that non-
homogeneous differential equations require both a general and a particular solution.  We can 
make this equation homogeneous by introducing the temperature relative to the surroundings: 
 

θ ≡ T - T∞      (7) 
 

Differentiating this equation we find: 
 

d
dx

dT
dx

θ
= + 0       (8) 

Differentiate a second time: 
 

d
dx

d T
dx

2

2

2

2

θ
=       (9) 

Substitute into the Fin Equation: 
d
dx

m
2

2
2 0

θ
θ− ⋅ =      (10) 

 
This equation is a Second Order, Homogeneous Differential Equation.   
 
 
3.3 Solution of the Fin Equation 
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  We apply a standard technique for solving a second order homogeneous linear differential 
equation.  
  
Try θ = eα⋅x.  Differentiate this expression twice: 

d
dx

e xθ
α α= ⋅ ⋅      (11) 

 
d
dx

e x
2

2
2θ

α α= ⋅ ⋅      (12) 

 
Substitute this trial solution into the differential equation: 
 

α2⋅eα⋅x  – m2⋅eα⋅x = 0     (13) 
 

Equation (13) provides the following relation: 
 

α = ±  m      (14) 
 

We now have two solutions to the equation.  The general solution to the above differential 
equation will be a linear combination of each of the independent solutions. 
 
Then: 

θ = A⋅em⋅x + B⋅ e-m⋅x     (15) 
 

where A and B are arbitrary constants which need to be determined from the boundary 
conditions.  Note that it is a 2nd order differential equation, and hence we need two boundary 
conditions to determine the two constants of integration.  
 
An alternative solution can be obtained as follows:  Note that the hyperbolic sin, sinh, the 
hyperbolic cosine, cosh, are defined as: 
 

sinh( )m x
e em x m x

⋅ =
−⋅ − ⋅

2
  cosh( )m x

e em x m x

⋅ =
+⋅ − ⋅

2
   (16) 

 
We may write: 
 

C m x D m x C
e e

D
e e C D

e
C D

e
m x m x m x m x

m x m x⋅ ⋅ + ⋅ ⋅ = ⋅
+

+ ⋅
−

=
+

⋅ +
−

⋅
⋅ − ÷ ⋅ − ÷

⋅ − ⋅cosh( ) sinh( )
2 2 2 2

(17) 

 
We see that if (C+D)/2 replaces A and (C-D)/2 replaces B then the two solutions are 
equivalent. 
 

θ = ⋅ ⋅ + ⋅ ⋅C m x D m xcosh( ) sinh( )      (18) 
 

Generally the exponential solution is used for very long fins, the hyperbolic solutions for 
other cases. 
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Boundary Conditions: 
 
Since the solution results in 2 constants of integration we require 2 boundary conditions.  The 
first one is obvious, as one end of the fin will be attached to a hot surface and will come into 
thermal equilibrium with that surface.  Hence, at the fin base,  
 

θ(0) = T0 - T∞ ≡ θ0     (19) 
 
The second boundary condition depends on the condition imposed at the other end of the fin. 
There are various possibilities, as described below. 
 
Very long fins: 
For very long fins, the end located a long distance from the heat source will approach the 
temperature of the surroundings. Hence, 
 

    θ(∞) = 0      (20) 
 
Substitute the second condition into the exponential solution of the fin equation: 
 
 

θ(∞) = 0 = A⋅em⋅∞ + B⋅ e-m⋅∞     (21) 
 

The first exponential term is infinite and the second is equal to zero.  The only way that this 
equation can be valid is if A = 0.  Now apply the second boundary condition.   
 

θ(0) =  θ0 = B⋅ e-m⋅0 ⇒ B = θ0     (22) 
The general temperature profile for a very long fin is then: 
 

θ(x) =  θ0 ⋅ e-m⋅x     (23) 
 

If we wish to find the heat flow through the fin, we may apply Fourier Law: 
 

q k A
dT
dx

k A
d
dxc c= − ⋅ ⋅ = − ⋅ ⋅

θ
     (24) 

 
Differentiate the temperature profile: 
 

d
dx

m eo
m xθ

θ= − ⋅ ⋅ − ⋅      (25) 
So that: 

q k A
h P
k A

e h P k A ec
c

m x
c

m x= ⋅ ⋅ ⋅
⋅
⋅

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅− ⋅ − ⋅θ θ0

1
2

0  = mxeM −
0θ   (26) 

where chPkAM = . 
 
Often we wish to know the total heat flow through the fin, i.e. the heat flow entering at the 
base (x=0). 
 

0 ∞ 
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q h P k Ac= ⋅ ⋅ ⋅ ⋅θ0 0θM=      (27) 
 

 
The insulated tip fin  
Assume that the tip is insulated and hence there is no heat transfer: 
 

0=
=Lxdx

dθ      (28) 

 
The solution to the fin equation is known to be: 
 

θ = ⋅ ⋅ + ⋅ ⋅C m x D m xcosh( ) sinh( )     (29) 
 

Differentiate this expression.  
 

d
dx

C m m x D m m x
θ

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅sinh( ) cosh( )     (30) 
 

Apply the first boundary condition at the base:   
 

)0cosh()0sinh()0( 0 ⋅+⋅== mDmCθθ     (31) 
 

 
So that D = θ0.  Now apply the second boundary condition at the tip to find the value of C: 
 

)cosh()sinh(0)( 0 LmmLmCmL
dx
d

⋅+⋅== θθ    (32) 
 
which requires that  
 

)sinh(
)cosh(

0 mL
mLC θ−=      (33) 

 
 
This leads to the general temperature profile: 
 

)cosh(
)(cosh)( 0 mL

xLmx −
= θθ      (34) 

 
 
We may find the heat flow at any value of x by differentiating the temperature profile and 
substituting it into the Fourier Law: 
 

q k A
dT
dx

k A
d
dxc c= − ⋅ ⋅ = − ⋅ ⋅

θ
     (35) 

     0    1 
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So that the energy flowing through the base of the fin is: 
 

)tanh()tanh( 00 mLMmLhPkAq c θθ ==     (36) 

 
If we compare this result with that for the very long fin, we see that the primary difference in 
form is in the hyperbolic tangent term.  That term, which always results in a number equal to 
or less than one, represents the reduced heat loss due to the shortening of the fin. 
 
Other tip conditions: 
We have already seen two tip conditions, one being the long fin and the other being the 
insulated tip. Two other possibilities are usually considered for fin analysis: (i) a tip subjected 
to convective heat transfer, and (ii) a tip with a prescribed temperature. The expressions for 
temperature distribution and fin heat transfer for all the four cases are summarized in the 
table below. 
 

Table 3.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.4 Fin Effectiveness  
 
How effective a fin can enhance heat transfer is characterized by the fin effectiveness, fε , 

which is as the ratio of fin heat transfer and the heat transfer without the fin.  For an adiabatic 

fin:  

)tanh(
)tanh(

)(
mL

hA
kP

hA
mLhPkA

TThA
q

q
q

CC

C

bC

ff
f ==

−
==

∞

ε    (37) 

If the fin is long enough, mL>2, tanh(mL)→1, and hence it can be considered as infinite fin 

(case D in Table 3.1). Hence, for long fins,  

Case Tip Condition Temp. Distribution Fin heat transfer 
A Convection heat 

transfer: 
hθ(L)=-k(dθ/dx)x=L mLmk

hmL

xLmmk
hxLm

sinh)(cosh

)(sinh)()(cosh

+

−+−

 

M
mLmk

hmL

mLmk
hmL

o
sinh)(cosh

cosh)(sinh

+

+
θ  

B Adiabatic 
(dθ/dx)x=L=0 mL

xLm
cosh

)(cosh −  mLM tanh0θ  

C Given temperature: 
θ(L)= θL 

mL

xLmxLm
b

L

sinh

)(sinh)(sinh)( −+−θ
θ

 
mL

mL
M b

L

sinh

)(cosh
0

θ
θ

θ
−

 

D Infinitely long fin 
θ(L)=0 

mxe−  M 0θ  
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CC
f A

P
h
k

hA
kP

⎟
⎠
⎞

⎜
⎝
⎛=→ε      (38) 

In order to enhance heat transfer, fε should be greater than 1 (In case fε <1, the fin would 

have no purpose as it would serve as an insulator instead). However ≥fε 2 is considered 

unjustifiable because of diminishing returns as fin length increases. 

 

To increase fε , the fin’s material should have higher thermal conductivity, k. It seems to be 

counterintuitive that the lower convection coefficient, h, the higher fε .  Well, if h is very 

high, it is not necessary to enhance heat transfer by adding heat fins.  Therefore, heat fins are 

more effective if h is low.   

Observations:  

• If fins are to be used on surfaces separating gas and liquid, fins are usually placed on 

the gas side. (Why?)  

• P/AC should be as high as possible.  Use a square fin with a dimension of W by W as 

an example: P=4W, AC=W2, P/AC=(4/W).  The smaller the W, the higher is the 

P/AC, and the higher the fε .Conclusion: It is preferred to use thin and closely spaced 

(to increase the total number) fins.  

The effectiveness of a fin can also be characterized by  

ft

ht

htb

ftb

bC

ff
f R

R
RTT
RTT

TThA
q

q
q

,

,

,

,

/)(
/)(

)(
=

−
−

=
−

==
∞

∞

∞

ε    (39) 

It is  a ratio of the thermal resistance due to convection to the thermal resistance of a 

fin. In order to enhance heat transfer, the fin’s resistance should be lower than the 

resistance due only to convection.  

 
 
3.5 Fin Efficiency 
 
The fin efficiency is defined as the ratio of the energy transferred through a real fin to that 
transferred through an ideal fin.  An ideal fin is thought to be one made of a perfect or infinite 
conductor material.  A perfect conductor has an infinite thermal conductivity so that the 
entire fin is at the base material temperature. 
 

( )η
θ

θ
= =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

q
q

h P k A m L
h P L

real

ideal

c L

L

tanh( )
    (40) 
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Simplifying equation (40): 
 

η
θ

θ
=

⋅
⋅

⋅ ⋅
⋅

=
⋅

⋅
k A
h P

m L
L

m L
m L

c L

L

tanh( ) tanh( )
    (41) 

 
The heat transfer through any fin can now be written as: 
 

∞−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
TT

Ah
q

f

(
..
1.

η
     (42) 

 
The above equation provides us with the concept of fin thermal resistance (using electrical 
analogy) as  

    
f

ft Ah
R

..
1

, η
=       (43) 

  
Overall Fin Efficiency: 
Overall fin efficiency for an array of fins 
 
 
 
 
 
 
 
 
 
 
 
 
Define terms: Ab: base area exposed to coolant 

Af: surface area of a single fin 

At: total area including base area and total finned surface, At=Ab+NAf 

N: total number of fins 

Heat Transfer from a Fin Array: 

qb 

qf 

Tb 

x 

Real situation

x 

Ideal situation 

Tb 
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Thermal Resistance Concept: 
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