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Objectives of This FEM Course 

Understand the fundamental ideas of the 

FEM 

Know the behavior and usage of each type of 

elements covered in this course 

Be able to prepare a suitable FE model for 

given problems 

Can interpret and evaluate the quality of the 

results (know the physics of the problems) 

Be aware of the limitations of the FEM (don’t 

misuse the FEM - a numerical tool) 

Computer Implementations 

·  Preprocessing (build FE model, loads and 

constraints) 

·  FEA solver (assemble and solve the 

system of equations) 

·  Post processing (sort and display the 

results) 

Available Commercial FEM Software 

Packages 

·  ANSYS (General purpose, PC and 

workstations) 

·  SDRC/I-DEAS (Complete CAD/CAM/CAE 

package) 

·  NASTRAN (General purpose FEA on 

mainframes) 

·  ABAQUS (Nonlinear and dynamic analyses) 

·  COSMOS (General purpose FEA) 

·  ALGOR (PC and workstations) 

·  PATRAN (Pre/Post Processor) 

·  HyperMesh (Pre/Post Processor) 

·  Dyna-3D (Crash/impact analysis) 
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A Brief History of the FEM 

·  1943 ----- Courant (Variational methods) 

·  1956 ----- Turner, Clough, Martin and Topp (Stiffness) 

·  1960 ----- Clough (“Finite Element”, plane problems) 

·  1970s ----- Applications on mainframe computers 

·  1980s ----- Microcomputers, pre- and postprocessors 

·  1990s ----- Analysis of large structural systems 
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FEM in Structural Analysis 

Procedures: 

Divide structure into pieces (elements with nodes) 

Describe the behavior of the physical quantities on 

each element 

Connect (assemble) the elements at the nodes to form 

an approximate  system of equations for the whole 

structure 

Solve the system of equations involving unknown 

quantities at the nodes (e.g., displacements) 

Calculate desired quantities (e.g., strains and stresses) 

at selected elements 
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B. Numerical methods 
    (I) Energy: Minimize an expression for the potential energy 
of the  structure over the whole domain. 
    (II) Boundary element: Approximates functions satisfying 
the  governing differential equations not the boundary 
 conditions. 
    (III) Finite difference: Replaces governing differential 
equations  and boundary conditions with algebraic finite 
difference  equations. 
    (IV) Finite element: Approximates the behavior of an 
irregular, continuous structure under general loadings and 
constraints with an assembly of discrete elements. 

A. Classical methods (Analytical) 
 They offer a high degree of insight, but the problems are 

difficult or impossible to solve  for anything but simple 
geometries and loadings. 

Method of Solutions 
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The finite element method (FEM), or finite element 

analysis (FEA), is based on the idea of building a 

complicated object with simple blocks, or, dividing a 

complicated object into small and manageable pieces. 

Application of this simple idea can be found 

everywhere in everyday life as well as in engineering. 

Examples: 

·  Lego (kids’ play) 

·  Buildings 

·  Approximation of the area of a circle: 

Why Finite Element Method? 

•·  Design analysis: hand calculations, experiments, and 

computer simulations 

•·  FEM/FEA is the most widely applied computer 

simulation method in engineering 

•·  Closely integrated with CAD/CAM applications 

·  ... 

Applications of FEM in Engineering 
·Mechanical/Aerospace/Civil/Automobile Engg. 
·  Structure analysis (static/dynamic,  
linear/nonlinear) 
·  Thermal/fluid flows 
·  Electromagnetics 
·  Geomechanics 
·  Biomechanics 
... Applied sciences, BVP, Diff. Eq.prob (Laplace. 
Poison,  heat cond.  



II. Review of Matrix Algebra for Solution of FEM 

II. Review of Matrix Algebra 
Row and Column Vectors 

Matrix Addition and Subtraction 

Scalar Multiplication 

Matrix Multiplication 







Solution Techniques for Linear Systems of Equations 

Gauss elimination methods 

Iterative methods 

Positive Definite Matrix 



Types of Finite Elements 

1-D (Line) Element 

2-D (Plane) Element 

3-D (Solid) Element 
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Step 1 Select the Element Type 

Step 2 Select a Displacement Function 

Step 3 Define the Strain/Displacement and Stress/Strain Relationships 

Step 4 Derive the Element Stiffness Matrix and Equations 

Step 5 Assemble the Element Equations to Obtain the Global Equations and 

Introduce Boundary Conditions 

Step 6 Solve for the Nodal Displacements 

Step 7 Solve for the Element Forces 

Procedure for solution of FEM problem 



Convergence – Cont’d 

 Types of Errors: 

· Modeling Error (beam, plate … theories) 

· Discretization Error (finite, piecewise … ) 

· Numerical Error ( in solving FE equations) 

 Types of Refinement: 

• h-refinement: reduce the size of the element (“h” refers to the typical size of 

the elements); 

• p-refinement: Increase the order of the polynomials on an element (linear to 

quadratic, etc.; “h” refers to the highest order in a polynomial); 

• r-refinement: re-arrange the nodes in the mesh;  

• hp-refinement: Combination of the h- and p-refinements (better results!). 



Isoparmetric formulation of bar element stiffness matrix 
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Recall 1-D bar element with local coordinate system  

 

 

Step 1 Select the Element Type 

Step 2 Select a Displacement Function 



Isoparmetric formulation of bar element stiffness matrix 
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1-D bar element with natural coordinate system  



III. Spring Element 
“Everything important is simple.” 

One Spring Element 

Governing Equation 



Two spring system 

(1) (2) 

i.e. (1) 

i.e. (2) 

Gov. Eq. 





Checking the Results 

·  Deformed shape of the structure 

·  Balance of the external forces 

·  Order of magnitudes of the numbers 

Notes About the Spring Elements 

Suitable for stiffness analysis 

Not suitable for stress analysis of the spring 

itself 

Can have spring elements with stiffness in the 

lateral direction, spring elements for torsion, 

etc. 

Example 1.1 
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Solution 



Check the results ???  



Apply superposition method obtain global K 

Example 1.2 

Solution:  
-Construct the following 

Which specify the global node 
numbers corresponding to the local 
node number 

Element stiffness matrices 

The matrix is symmetric, banded, but singular 
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Potential energy Approach 
At stable equilibrium, the body is identified by a minimum value of the total potential 

energy.  

The potential energy of an elastic body is defined as 

 Wloadingofenergypotential(U)energyStrain 

Strain energy of a linear spring 
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F = Force in the 

spring  

u = deflection of 

the spring 

k = “stiffness” of 

the spring 

Hooke’s Law 

F = ku 



Strain energy of a linear spring 

F 
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Differential strain energy of the spring 

for a small change in displacement 

(du) of the spring 
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Strain energy of a nonlinear spring 
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Potential energy of the loading (for a single spring as in the 

figure) 

FuW 

Potential energy of a linear spring 
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Example of how to obtain the equlibr 



Principle of minimum potential energy for a system of springs 

For this system of spring, first write down the total potential 

energy of the system as: 
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Principle of minimum potential energy for a system of springs 

In matrix form, equations 1 and 2  look like 
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Does this equation look familiar? 

 

Also look at example problem worked out in class 



STIFNESS AND FLEXIBILLITY. STIFFNES MATRIX 

•  The system is in equilibrium 
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STIFNESS AND FLEXIBILLITY. STIFFNES MATRIX 

• The equations written in matrix form: 

 

 

 

 

 

• p- vector of external nodal loads acting on the 
structure 

• K- system or structural stiffness matrix  

• u-over-all nodal displacement vector  
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